Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Effect of synthesis method on the structural, conductive and sensor properties of NiO–In2O3 nanocomposites

https://doi.org/10.17586/2220-8054-2024-15-6-867-878

Abstract

The structural, conductive and sensor properties of NiO–In2O3 composites synthesized by hydrothermal and impregnation methods are investigated and compared. The mixed oxide considered consists of nanoparticles with electronic (In2O3) and hole (NiO) conduction bands. The lattice parameters of indium oxide decrease with the introduction of NiO into composites synthesized by the hydrothermal method. The addition of 3 % NiO to the hydrothermal composite also increases its specific surface area. The specific surface area and In2O3 lattice parameters in the impregnated samples are essentially independent of the NiO content. The conductivity of impregnated composites is an order of magnitude lower than that of hydrothermal composites. An increase in NiO content leads to a significant enhancement of the sensor response to H2 and CO. In addition, there is a decrease in the optimal operating temperature of hydrothermal and impregnated samples by 60 and 20 C, respectively.

About the Authors

M. I. Ikim
N. N. Semenov Federal Research Center for Chemical Physics RAS
Russian Federation

Mariya I. Ikim

4 Kosygin Street, Moscow, 119991



V. F. Gromov
N. N. Semenov Federal Research Center for Chemical Physics RAS
Russian Federation

Vladimir F. Gromov

4 Kosygin Street, Moscow, 119991



G. N. Gerasimov
N. N. Semenov Federal Research Center for Chemical Physics RAS
Russian Federation

Genrikh N. Gerasimov

4 Kosygin Street, Moscow, 119991



V. G. Bekeshev
N. N. Semenov Federal Research Center for Chemical Physics RAS
Russian Federation

Valentin G. Bekeshev

4 Kosygin Street, Moscow, 119991



L. I. Trakhtenberg
N. N. Semenov Federal Research Center for Chemical Physics RAS; Lomonosov Moscow State University; Moscow Institute of Physics and Technology(State University)
Russian Federation

Leonid I. Trakhtenberg

4 Kosygin Street, Moscow, 119991



References

1. Zappa D., Galstyan V., Kaur N., Arachchige H.M.M., Sisman O., Comini E. Metal oxide-based heterostructures for gas sensors – A review. Anal. Chim. Acta, 2018, 1039, P. 1–23.

2. Gerasimov G.N., Gromov V.F., Ilegbusi O.J., Trakhtenberg L.I. The mechanisms of sensory phenomena in binary metal-oxide nanocomposites. Sens. Actuators B Chem., 2017, 240, P. 613–624.

3. Hu J., Sun Y., Xue Y., Zhang M., Li P., Lian K., Chen Y. Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sens. Actuators B Chem., 2018, 257, P. 124–135.

4. Vasiliev A., Shaposhnik A., Moskalev P., Kul O. Kinetics of chemisorption on the surface of nanodispersed SnO2-PdOx and selective determination of CO and H2 in air. Sensor, 2023, 23, 3730.

5. Kim H.J., Lee J.H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B Chem., 2014, 192, P. 607–627.

6. Xu K., Duan S.L., Tang Q., Zhu Q., Zhao W., Yu X., Yang Y., Yu T., Yuan C.L., P-N heterointerface-determined acetone sensing characteristics in α-MoO3-NiO core-shell nanobelts. Cryst. Eng. Comm., 2019, 21, P. 5834–5844.

7. Kavitha G., Arul K.T., Babu P. Enhanced acetone gas sensing behavior of n-ZnO/p-NiO nanostructures. J. Mater. Sci.: Mater. Electron., 2018, 29, P. 6666–6671.

8. Choi S., Lee J.K., Lee W.S., Lee C., Lee W.I. Acetone sensing of multi-networked WO3-NiO core-shell nanorod sensors. J. Korean Phys. Soc., 2017, 71, P. 487–493.

9. Sun G.J., Kheel H., Choi S., Hyun S.K., Lee C. Prominent gas sensing performance of TiO2-core/NiO-shell nanorod sensors. J. Nanosci. Nanotechnol., 2017, 17, P. 4099–4102.

10. Haq M.U., Wen Z., Zhang Z.Y., Khan S., Lou Z.R., Ye Z.Z., Zhu L.P. A two-step synthesis of nanosheet-covered fibers based on α-Fe2O3/NiO composites towards enhanced acetone sensing. Sci. Rep., 2018, 8, 1705.

11. Lee H., Mirzaei A., Kim H.W., Kim S.S. SnO2(n)–NiO(p) composite nanowebs: Gas sensing properties and sensing mechanisms. Sens. Actuators B Chem., 2018, 258, P. 204–214.

12. Ikim M.I., Gerasimov G.N., Gromov V.F., Ilegbusi O.J., Trakhtenberg L.I. Synthesis, structural and sensor properties of nanosized mixed oxides based on In2O3 particles. Int. J. Mol. Sci., 2023, 24, 1570.

13. Katoch A., Choi S.-W., Kim J.-H., Lee J.-H., Lee J.-S., Kim S.S. Importance of the nanograin size on the H2S-sensing properties of ZnO-CuO composite nanofibers. Sens. Actuators B Chem., 2015, 214, P. 111–116.

14. Choi S.-W., Zhang J., Katoch A., Kim S.S. H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers. Sens. Actuators B Chem., 2012, 160, P. 54–60.

15. Liu Y., Bai J., Li Y., Yang L., Wang Y., Li Y., Liu F., Zhang Y., Lu G. Preparation of PdO-decorated NiO porous film on ceramic substrate for highly selective and sensitive H2S detection. Ceramics Int., 2022, 48, P. 4787–4794.

16. Liu H., Wang Z., Cao G., Pan G., Yang X., Qiu M., Sun C., Shao J., Li Z., Zhang H. Construction of hollow NiO/ZnO p-n heterostructure for ultrahigh performance toluene gas sensor. Mater. Scie. in Semicond. Proc., 2022, 141, 106435.

17. Ju D., Xu H., Xu Q., Gong H., Qiu Z., Guo J., Zhang J., Cao B. High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N hetero-junction sensors. Sens. Actuators B Chem., 2015, 215, P. 39–44.

18. Kaur M., Dadhich B.K., Singh R., Ganapathi K., Bagwaiya T., Bhattacharya S., Gadkari S.C., RF sputtered SnO2: NiO thin films as sub-ppm H2S sensor operable at room temperature. Sens. Actuators B Chem., 2017, 242, P. 389–403.

19. Fan X., Xu Y., He W. High acetone sensing properties of In2O3-NiO one-dimensional heterogeneous nanofibers based on electrospinning. RSC Advances., 2021, 19, P. 11215–11223.

20. Yan C., Lu H.B., Gao J.Z., Zhu G.Q., Yin F., Yang Z.B., Liu Q.R., Li G. Synthesis of porous NiO-In2O3 composite nanofibers by electrospinning and their highly enhanced gas sensing properties. J. Alloys Compd., 2017, 699, P. 567–574.

21. Belysheva T.V., Gerasimov G.N., Gromov V.F., Spiridonova E.Yu., Trakhtenberg L.I. Conductivity of SnO2–In2O3 nanocrystalline composite films. Russ. J. Phys. Chem. A, 2010, 84, P. 1554–1559.

22. Qin W., Lu B., Xu X., Shen Y., Meng F. Metal organic framework-derived porous Ni-doped In2O3 for highly sensitive and selective detection to hydrogen at low temperature. Sens. Actuators B Chem., 2024, 417, 136123.

23. Jin Z., Wang C., Wu L., Song H., Yao X., Liu J., Wang, F. Fast responding and recovering of NO2 sensors based on Ni-doped In2O3 nanoparticles. Sens. Actuators B Chem., 2023, 377, 133058.

24. Yang Q., Cui X., Liu J., Zhao J., Wang Y., Gao, Y., Lu G. A low temperature operating gas sensor with high response to NO2 based on ordered mesoporous Ni-doped In2O3. New J. Chem., 2016, 40 (3), P. 2376–2382.

25. Zhang Y., Cao J., Wang Y. Ultrahigh methane sensing properties based on Ni-doped hierarchical porous In2O3 microspheres at low temperature. Vacuum, 2022, 202, 111149.

26. Liang Z., Zhang Y., Wang M., Liu S., Zhang X., Lei S., Liu G. Facile preparation of flower-like NiO/In2O3 composite for sensitively and selectively detecting NO2 at room and lower temperatures. Appl. Surf. Sci., 2024, 657, 159805.

27. Zhang S., Li J., Han L., Zhang B., Wang Y., Zhang Z. Preparation of porous NiO/In2O3 nanoflower-like composites and their dual selectivity for CO/CH4. Mater. Res. Bull., 2023, 165, 112332.


Review

For citations:


Ikim M.I., Gromov V.F., Gerasimov G.N., Bekeshev V.G., Trakhtenberg L.I. Effect of synthesis method on the structural, conductive and sensor properties of NiO–In2O3 nanocomposites. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):867-878. https://doi.org/10.17586/2220-8054-2024-15-6-867-878

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)