Туннельный ток контакта фрактального объекта с металлом и сверхрешеткой
https://doi.org/10.17586/2220-8054-2023-14-1-54-58
Аннотация
В данной работе исследуются особенности протекания электрического тока в условиях туннельного эффекта во фрактальных структурах. На основе закона дисперсии электронов для фрактальных объектов получено выражение для нахождения туннельного тока. Вольт-амперные характеристики построены для следующих контактов: фрактал-фрактал, фрактал-металл, фрактал-сверхрешетка. Выявлено влияние фрактальной размерности на характеристики туннельного тока.
Об авторах
Н. Н. КонобееваРоссия
Наталия Н. Конобеева,
Волгоград.
М. Б. Белоненко
Россия
Михаил Б. Белоненко,
Волгоград.
Список литературы
1. Hausdorff F. Dimension und au¨ βeres Maβ. Math. Ann., 1919, 79, P. 157–179.
2. Heymans O., Fissette J., Vico P., Blacher S., Masset D., Brouers F. Is fractal geometry useful in medicine and biomedical sciences? Med Hypotheses, 2000, 54(3), P. 360-6.
3. Uahabi K.L., Atounti M. Applications of fractals in medicine. Annals of the University of Craiova, Mathematics and Computer Science Series, 2015, 42(1), P. 167–174.
4. Buldyrev S.V. Fractals in Biology. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, 2009, P. 3779–3802.
5. Criscuoli S., Rast M.P., Ermolli I., Centrone M. On the reliability of the fractal dimension measure of solar magnetic features and on its variation with solar activity. Astronomy and Astrophysics, 2007, 461(1), P. 331–338.
6. Husain A., Reddy J., Bisht D., Sajid M. Fractal dimension of coastline of Australia. Scientific Reports, 2021, 11 Article number 6304.
7. Abed A.T., Abu-AlShaer M.J., Jawad A.M.Fractal Antennas for Wireless Communications. In book:Modern Printed-Circuit Antennas Ed. H. Al-Rizzo. IntechOpen, London, 2020, 176 p.
8. De Nicola F., Puthiya Purayil N.S., Spirito D., Miscuglio M., Tantussi F., Tomadin A., De Angelis F., Polini M., Krahne R., Pellegrini V. Multiband plasmonic Sierpinski carpet fractal antennas. ACS Photonics, 2018, 5, P. 2418.
9. Liu W., Wang Z., Wang G., Zeng Q., He W., Liu L., Wang X., Xi Y., Guo H., Hu C., Wang Z.L. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nature Communications, 2020, 11 Article number 1883.
10. Menassel R. Optimization of fractal image compression. In book: Fractal Analysis Ed. R. Koprowski, IntechOpen, London, 2020, 128 p.
11. Tiwari A. Fractal applications in electrical and electronics engineering. International Journal of Engineering Science and Advanced Technology, 2012, 2(3), P. 406–411.
12. Fan J.A., Yeo W.-H., Su Y., Hattori Y., Lee W., Jung S.-Y., Zhang Y., Liu Z., Cheng H., Falgout L., Bajema M., Coleman T., Gregoire D., Larsen R.J., Huang Y., Rogers J.A. Fractal design concepts for stretchable electronics. Nature Communications, 2014, 5, Article number 3266.
13. Alexander S., Laerman C., Orbach R., Rosenberg H.M. Fracton interpretation of vibrational properties of crosslinked polimers, glasses and irradiated quartz. Phys. Rev. B., 1983, 28(8), P. 4615–4619.
14. Yoshida B. Exotic topological order in fractal spin liquids. Phys. Rev. B, 2013, 88, P. 125122.
15. Vijay S., Haah J., Fu L. A new kind of topological quantum order: A dimensional hierarchy of quasiparticles built from stationary excitations. Phys. Rev. B, 2015, 92, P. 235136.
16. Williamson D.J. Fractal symmetries: Ungauging the cubic code, Phys. Rev. B, 2016, 94, P. 155128.
17. Ma H., Schmitz A.T., Parameswaran S.A., Hermele M., Nandkishore R.M. Topological entanglement entropy of fracton stabilizer codes. Phys. Rev. B, 2018, 97, P. 125101.
18. Slagle K., Kim Y.B. Fracton topological order from nearest-neighbor two-spin interactions and dualities. Phys. Rev. B, 2017, 96, P. 165106.
19. Anderson P.W. Absence of diffusion in certain random lattices, Physical Review, 1958, 109(5), P. 1492–1505.
20. Konobeeva N.N., Belonenko M.B. Sensitivity characteristics of germanene. Nanosystems: physics, chemistry, mathematics, 2018, 9(6), P. 770–774.
21. Zosimov V.V., Lyamshev L.M. Fractals and scaling in acoustics. Acoustical Physics, 1994, 40(5), P. 627–653.
22. Zhikharev L.A. Fractal dimensionalities. Geometry and Graphics, 2018, 6(3), P. 33–48.
23. Adams H., Aminian M., Farnell E., Kirby M., Peterson C., Mirth J., Neville R., Shipman P., Shonkwiler C. A fractal dimension for measures via persistent homology. In: Baas N., Carlsson G., Quick G., Szymik M., Thaule M. (eds), Topological Data Analysis. Abel Symposia, vol 15. Springer, 2020.
24. Levitov L.S., Shitov A.V. Green’s functions. Problems with solutions. Fizmatlit, Moscow, 2003, 392 p.
25. Dalrymple K., Strichartz R.S., Vinson J.P. Fractal differential equations on the Sierpinski gasket. The Journal of Fourier Analysis and Applications, 1999, 5(73), P. 203–284.
26. Fukushima M., Shima T. On a spectral analysis for the Sierpinski gasket. Potential Analysis, 1992, 1, P. 1-35.
27. Strichartz R.S. Analysis on Fractals. Notices of the AMS, 46(10), P. 1199–1208.
28. Strichartz R.S. Some properties of Laplacians on fractals. Journal of Functional Analysis, 1999, 164, P. 181–208.
29. Kim M.H., Yoon D.H., Kim I. Lower and upper bounds for the anomalous diffusion exponent on Sierpinski carpets. J. Phys. A Math. Gen., 1993, 26, P. 5655–5660.
30. Reinhardt H., Kroll M., Karstens S.L., Schlabach S., Hampp N.A., Tallarek U. Nanoscaled fractal superstructures via laser patterning – A versatile route to metallic hierarchical porous materials. Adv. Mater. Interfaces, 2020, 8, P. 2000253.
Рецензия
Для цитирования:
Конобеева Н.Н., Белоненко М.Б. Туннельный ток контакта фрактального объекта с металлом и сверхрешеткой. Наносистемы: физика, химия, математика. 2023;14(1):54-58. https://doi.org/10.17586/2220-8054-2023-14-1-54-58
For citation:
Konobeeva N.N., Belonenko M.B. Tunneling current of contact of fractal object with metal and superlattice. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(1):54-58. https://doi.org/10.17586/2220-8054-2023-14-1-54-58