Increase of signal to reference ratio for phase compensation in continuous-variable quantum key distribution systems
https://doi.org/10.17586/2220-8054-2023-14-1-59-68
Abstract
Continuous variables quantum key distribution (CV-QKD) systems are a promising direction for quantum communications. Coherent detection, which is the basis of CV-QKD, requires taking into consideration and compensating phase distortions. Phase compensation algorithms rely on using reference pulses for phase drift estimation and correcting signal quadratures. The ratio of the number of reference pulses to that of the signal ones, affects the accuracy of the phase compensation algorithm. On the other hand, it influences the secure key rate (SKR). The paper considers the effect of the reference to signal ratio on the SKR, and proposes a modification of the phase compensation algorithm, which allows using a smaller number of references at a pulse repetition frequency close to that of the system phase noise, which results in increasing SKR. We also propose a method for estimating the phase noise in the system for selection of the optimal signal to reference ratio.
Keywords
About the Authors
F. M. GoncharovRussian Federation
Fedor Mikhailovich Goncharov –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
B. E. Pervushin
Russian Federation
Boris Evgenevich Pervushin –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
B. A. Nasedkin
Russian Federation
Boris Aleksandrovich Nasedkin –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
R. K. Goncharov
Russian Federation
Roman Konstantinovich Goncharov –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
D. A. Yashin
Russian Federation
Daniil Aleksandrovich Yashin –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
M. E. Gellert
Russian Federation
Mikhail Evgenevich Gellert –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
D. V. Sulimov
Russian Federation
Danil Vasilevich Sulimov –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
P. A. Morozova
Russian Federation
Polina Alekseevna Morozova –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
I. M. Filipov
Russian Federation
Ilya Maksimovich Filipov –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
Iu. A. Adam
Russian Federation
Iurii Alexandrovich Adam –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
V. V. Chistiakov
Russian Federation
Vladimir Viktorovich Chistiakov –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
E. O. Samsonov
Russian Federation
Eduard Olegovich Samsonov –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
V. I. Egorov
Russian Federation
Vladimir Ilyich Egorov –
49, bldg. A, Kronverksky Pr., Saint Petersburg, 197101.
References
1. Gleim A.V., Egorov V.I., Nazarov Yu.V., Smirnov S.V., Chistyakov V.V., Bannik O.I., Anisimov A.A., Kynev S.M., Ivanova A.E., Collins R.J., et al. Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Optics express, 2016, 24 (3), P. 2619–2633.
2. Goncharov R., Vorontsova I., Kirichenko D., Filipov I., Adam I., Chistiakov V., Smirnov S., Nasedkin B., Pervushin B., Kargina D., et al. The rationale for the optimal continuous-variable quantum key distribution protocol. Optics, 2022, 3 (4), P. 338–351.
3. Hirano T., Yamanaka H., Ashikaga M., Konishi T., Namiki R. Quantum cryptography using pulsed homodyne detection. Physical review A, 2003, 68 (4), 042331.
4. Jouguet P., Kunz-Jacques S., Diamanti E. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Physical Review A, 2013, 87 (6), 062313.
5. Wang T., Huang P., Zhou Y., Liu W., Ma H., Wang S., Zeng G. High key rate continuous-variable quantum key distribution with a real local oscillator. Optics express, 2018, 26 (3), P. 2794–2806.
6. Shao Y., Wang H., Pi Y., Huang W., Li Y., Liu J., Yang J., Zhang Y., Xu B. Phase noise model for continuous-variable quantum key distribution using a local local oscillator. Physical Review A, 2021, 104 (3), 032608.
7. Soh D.B.S., Brif C., Coles P.J., Lutkenhaus N., Camacho R.M., Urayama J., Sarovar M. Self-referenced continuous-variable quantum key distri-¨ bution protocol. Physical Review X, 2015, 5 (4), P. 1–15.
8. Ren S., Yang S., Wonfor A., White I., Penty R. Demonstration of high-speed and low-complexity continuous variable quantum key distribution system with local local oscillator. Scientific Reports, 2021, 11 (1), P. 1–13.
9. Weedbrook C., Lance A.M., Bowen W.P., Symul T., Ralph T.C., Ping Koy Lam. Quantum cryptography without switching. Physical review letters, 2004, 93 (17), 170504.
10. Grosshans F., Van Assche G., Wenger J., Brouri R., Cerf N.J., Grangier P. Quantum key distribution using gaussian-modulated coherent states. Nature, 2003, 421 (6920), P. 238–241.
11. Laudenbach F., Pacher C., Fung C.-H.F., Poppe A., Peev M., Schrenk B., Hentschel M., Walther P., Hubel H. Continuous-variable quantum key¨ distribution with gaussian modulation—the theory of practical implementations. Advanced Quantum Technologies, 2018, 1 (1), 1800011.
12. Huang D., Huang P., Lin D., Wang C., Zeng G. High-speed continuous-variable quantum key distribution without sending a local oscillator. Optics letters, 2015, 40 (16), P. 3695–3698.
13. Ma X.-C., Sun S.-H., Jiang M.-S., Liang L.-M. Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-keydistribution systems. Physical Review A, 2013, 88 (2), 022339.
14. Zou M., Mao Y., Chen T.-Y. Phase estimation using homodyne detection for continuous variable quantum key distribution. J. of Applied Physics, 2019, 126 (6), 063105.
15. Qi B., Lougovski P., Pooser R., Grice W., Bobrek M. Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection. Physical Review X, 2015, 5 (4), 041009.
16. Marie A., Alleaume R. Self-coherent phase reference sharing for continuous-variable quantum key distribution. Physical Review A, 2017, 95 (1), 012316.
17. Wang T., Huang P., Zhou Y., Liu W., Zeng G. Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator. Physical Review A, 2018, 97 (1), 012310.
18. Bartolo R.E., Tveten A.B., Dandridge A. Thermal phase noise measurements in optical fiber interferometers. IEEE J. of Quantum Electronics, 2012, 48 (5), P. 720–727.
19. Zhang L., Wang Y., Yin Z., Chen W., Yang Y., Zhang T., Huang D., Wang S., Li F., Han Z. Real-time compensation of phase drift for phase-encoded quantum key distribution systems. Chinese Science Bulletin, 2011, 56 (22), P. 2305–2311.
Review
For citations:
Goncharov F.M., Pervushin B.E., Nasedkin B.A., Goncharov R.K., Yashin D.A., Gellert M.E., Sulimov D.V., Morozova P.A., Filipov I.M., Adam I.A., Chistiakov V.V., Samsonov E.O., Egorov V.I. Increase of signal to reference ratio for phase compensation in continuous-variable quantum key distribution systems. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(1):59-68. https://doi.org/10.17586/2220-8054-2023-14-1-59-68