Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Electric field effect on the light penetration depth and switching times in liquid crystal cells with nonuniform director orientation

https://doi.org/10.17586/2220-8054-2023-14-1-74-85

Abstract

The features of light refraction in liquid crystal cells with a continuously changing director distribution are studied. The theoretical description is constructed within the framework of the geometrical optics approximation. The neighborhoods of the turning points are considered, where due to the variable refractive index the ray smoothly changes the direction of propagation to the opposite one. It is shown that the applied electric field changes the nature of the extraordinary ray refraction. Electrically controlled refraction of light in cells with a planar and hybrid director orientation for incident angles exceeding the angle of total internal reflection is experimentally studied. The dependencies of the turn on and turn off times of the optical response on the applied voltage and the incident angles on the glass – liquid crystal boundary are obtained.

About the Authors

E. V. Aksenova
Saint Petersburg State University
Russian Federation

Elena V. Aksenova,

7/9, Universitetskaya str., St. Petersburg, 199034.



A. A. Karetnikov
Saint Petersburg State University
Russian Federation

Aleksandr A. Karetnikov,

7/9, Universitetskaya str., St. Petersburg, 199034.



N. A. Karetnikov
ITMO University
Russian Federation

Nikita A. Karetnikov,

49, bldg. A, Kronverksky Pr., St. Petersburg, 197101.



A. P. Kovshik
Saint Petersburg State University
Russian Federation

Aleksandr P. Kovshik,

7/9, Universitetskaya str., St. Petersburg, 199034.



A. V. Svanidze
Saint Petersburg State University; Ohio State University
Russian Federation

Anastasiya V. Svanidze,

7/9, Universitetskaya str., St. Petersburg, 199034;

281, W Lane Ave, Columbus, Ohio, 43210, USA.



S. V. Ul’yanov
Saint Petersburg State University
Russian Federation

Sergey V. Ul’yanov,

7/9, Universitetskaya str., St. Petersburg, 199034.



References

1. Wu Shin-Tson, Yang Deng-Ke. Fundamentals of liquid crystal devices. John Wiley & Sons, Chichester., 2006, 394 p.

2. Cai W., Shalaev V. Optical metamaterials. Springer, New York, 2010, 200 p.

3. Joannopoulos J., Meade R., Winn J., Johnson S. Photonic crystals. Princeton University Press, Princeton, 2008, 286 p.

4. Leslie F.M. Distortion of twisted orientation patterns in liquid crystals by magnetic fields. Mol. Cryst. Liq. Cryst, 1970, 12(1), P. 57–72.

5. Berreman D.W., Heffner W.R. New bistable liquid-crystal twist cell. J. Appl. Phys, 1981, 52, P. 3032–3039.

6. Thurston R.N., Berreman D.W. Equilibrium and stability of liquid-crystal configurations in an electric field. J. Appl. Phys, 1981, 52(1), P. 508–509.

7. Hiring R., Funk W., Trebin H.R., Shmidt M., Schmiedel H. Threshold behavior and electro-optical properties of twisted nematic layer with weak anchoring in the tilt and twist angle. J. Appl. Phys., 1991, 70(8), P. 4211–4216.

8. Hong Qi, Wu T.X., Wu Shin-Tson. Optical wave propagation in a cholesteric liquid crystal using the finite element method. Liq. Cryst, 2003, 30(3), P. 367–375.

9. Berreman D.W., Scheffer T.J. Order versus temperature in cholesteric liquid crystals from reflectance spectra. Phys.Rev. A, 1972, 5(3), P. 1397– 1403.

10. Berreman D.W. Optics in stratified and anisotropic media: 4×4–matrix formulation. J. Opt. Soc. Am, 1972, 62, P. 502–510.

11. Berreman D.W. Stratified media: optics in smoothly varying anisotropic planar structures: application to liquid-crystal twist cells. J. Opt. Soc. Am, 1973, 63, P. 1374–1380.

12. Palto S.P. An algorithm for solving the optical problem for stratified anisotropic media. JETP, 2001, 92, P. 552–560.

13. Gevorgyan A.H. Photonic band gaps from a stack of right- and left-hand chiral photonic crystal layers. Phys. Rev. E, 2012, 85, P. 021704.

14. Belyakov V.A., Dmitrienko V.E. Theory of the optical properties of cholesteric liquid crystals. Sov. Phys. Solid State, 1974, 15(9), P. 1811–1815.

15. Dmitrienko V.E., Belyakov V.A. Higher orders of the selective reflection of light by cholesteric liquid crystals. Sov. Phys. Solid State, 1974, 15(12), P. 2213–2216.

16. Lakhtakia A., Weiglhofer W.S. Simple and exact analytic solution for oblique propagation in a cholesteric liquid crystal. Microwave Opt. Technol., 1996, 12, P. 245–248.

17. Val’kov A.Yu., Aksenova E.V., Romanov V.P. First-order and continuous Freedericksz transitions in cholesteric liquid crystals.´ Phys. Rev. E, 2013, 87, P. 022508.

18. Rokushima K., Yamakita J. Analysis of anisotropic dielectric gratings. J. Opt. Soc. Am., 1983, 73(7), P. 901–908.

19. Wang F., Lakhtakia A. Response of slanted chiral sculptured thin films to dipolar sources. Opt. Commun, 2004, 235, P. 133–151.

20. Avendano-Alejo M. Analysis of the refraction of the extraordinary ray in a plane-parallel uniaxial plate with an arbitrary orientation of the optical axis. Optics Express, 2005, 13, P. 2549–2555.

21. Panasyuk G., Kelly J., Gartland E.C., Allender D.W. Geometrical optics approach in liquid crystal films with three-dimensional director variations. Phys.Rev. E, 2003, 67, P. 041702.

22. Aksenova E.V., Karetnikov A.A., Kovshik A.P., Romanov V.P., Val’kov A.Yu. Return back of the extraordinary beam for oblique incidence in helical liquid crystals with large pitch. Europhys. Lett., 2005, 69(1), P. 68–74.

23. Tenishchev S.S., Kiselev A.D., Ivanov A.V., Uzdin V.M. Multiple minimum-energy paths and scenarios of unwinding transitions in chiral nematic liquid crystals. Phys. Rev. E, 2019, 100, P. 062704.

24. Tenishchev S.S., Tambovtcev I.M., Kiselev A.D., Uzdin V.M. Hysteresis and Freedericksz thresholds for twisted states in chiral nematic liquid´ crystals: Minimum-energy path approach. Journal of Molecular Liquids, 2021, 325, P. 115242.

25. de Gennes P.-G., Prost J. The Physics of liquid crystals, University Press, Oxford, 1993, 616 p.

26. Stewart I.W. The static and dynamic continuum theory of liquid crystals: a mathematical introduction, Liquid crystals book series. Taylor & Francis, London, 2004, 360 p.

27. Aksenova E.V., Karetnikov A.A., Kovshik A.P., Kryukov E.V., Romanov V.P. Propagation of light through a forbidden zone in chiral media. J. Opt. Soc. Amer. A, 2008, 25(3), P. 600–608.

28. Karetnikov A.A., Karetnikov N.A., Kovshik A.P., Ryumtsev E.I., Aksenova E.V., Kryukov E.V., Romanov V.P. Local dynamics of director reorientation under electric field in helical LC structure. Mol. Cryst. Liq. Cryst., 2012, 561(1), P. 97–106.

29. Blinov L.M. Structure and properties of liquid crystals. Springer, Dordrecht, 2011, 439 p.

30. Karetnikov N.A., Kovshik A.P., Karetnikov A.A., Ryumtsev E.I., Aksenova E.V., Svanidze A.V. Fast electro-optical response of a cell with a homeoplanar layer of a nematic liquid crystal. JETP Lett., 2017, 106(5), P. 313–316.


Review

For citations:


Aksenova E.V., Karetnikov A.A., Karetnikov N.A., Kovshik A.P., Svanidze A.V., Ul’yanov S.V. Electric field effect on the light penetration depth and switching times in liquid crystal cells with nonuniform director orientation. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(1):74-85. https://doi.org/10.17586/2220-8054-2023-14-1-74-85

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)