Chemical looping methane dry reforming over Ni-containing modified ceria-zirconia
https://doi.org/10.17586/2220-8054-2024-15-6-879-892
Abstract
Modified ceria-zirconia oxides were prepared in supercritical fluids in flow-type installation. Ni was added by wetness impregnation. All materials were studied by a complex of physicochemical techniques (XRD, TEM, H2-TPR). Catalysts have been investigated in a modern process – chemical looping methane dry reforming (CLMDR). Conversions of CH4 and CO2, H2/CO ratio, H2 and CO productivities were calculated. The features of CLMDR process were compared with results obtained in MDR steady-state conditions.
About the Authors
E. SmalRussian Federation
Ekaterina Smal
630090, Lavrentieva prospect, 5, Novosibirsk
V. Fedorova
Russian Federation
Valeria Fedorova
630090, Lavrentieva prospect, 5, Novosibirsk
K. Valeev
Russian Federation
Konstantin Valeev
630090, Lavrentieva prospect, 5, Novosibirsk
A. Hassan
Russian Federation
Amir Hassan
630090, Pirogova st., 1, Novosibirsk
E. Gerasimov
Russian Federation
Evgeny Gerasimov
630090, Lavrentieva prospect, 5, Novosibirsk
M. Simonov
Russian Federation
Mikhail Simonov
630090, Lavrentieva prospect, 5, Novosibirsk
References
1. Wang Y., Yao L., Wang S., Mao D., Hu C. Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: A review. Fuel Process. Technol., 2018, 169, P. 199–206.
2. Manfro R.L., Souza M.M.V.M. Overview of Ni-Based Catalysts for Hydrogen Production from Biogas Reforming. Catalysts, 2023, 13, 1296.
3. Cai Y., Zhang Y., Zhang X., Wang Y., Zhao Y., Li G., Zhang G. Recent Advances in Ni-Based Catalysts for CH4-CO2 Reforming (2013–2023). Atmosphere, 2023, 14, 1323.
4. Zhang G., Liu J., Xu Y., Sun Y. A review of CH4-CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010–2017). Int. J. Hydrogen Energy, 2018, 43, P. 15030–15054.
5. Bradford M.C.J., Vannice M.A. CO2 reforming of CH4. Catal. Rev., 1999, 41, P. 1–42.
6. Marinho A.L.A., Toniolo F.S., Noronha F.B., Epron F., Duprez D., Bion N. Highly active and stable Ni dispersed on mesoporous CeO2–Al2O3 catalysts for production of syngas by dry reforming of methane. Appl. Catal. B, 2021, 281, 119459.
7. Li R., Zhang J., Shi J., Li K., Liu H., Zhu X. Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane. J. Fuel Chem. Technol., 2022, 50 (11), P. 1458–1470.
8. L¨ofberg A., Guerrero-Caballero J., Kane T., Rubbens A., Jalowiecki-Duhame L. Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production. Appl. Catal. B, 2017, 212, P. 159–174.
9. L¨ofberg A., Kane T., Guerrero-Caballero J., Jalowiecki-Duhamel L. Chemical looping dry reforming of methane: towards shale-gas and biogas valorization. Chem. Eng. Process.: Process Intensif., 2017, 122, P. 523–529.
10. Tang M., Xu L., Fan M. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review. Appl. Energy, 2015, 151, P. 143–156.
11. Dawa T., Sajjadi B. Exploring the potential of perovskite structures for chemical looping technology: A state-of-the-art review. Fuel Process. Technol., 2024, 253, 108022.
12. Zeng L., Cheng Z., Fan J.A., Fan L.-S., Gong J. Metal oxide redox chemistry for chemical looping processes. Nat. Rev. Chem., 2018, 2, P. 349–364.
13. Kambolis A., Matralis H., Trovarelli A., Papadopoulou Ch. Ni/CeO2–ZrO2 catalysts for the dry reforming of methane. Appl. Catal. A, 2010, 377, P. 16–26.
14. Chen W., Zhao G., Xue Q., Chen L., Lu Y. High carbon-resistance Ni/CeAlO3–Al2O3 catalyst for CH4/CO2 reforming. Appl. Catal. B, 2013, 136–137, P. 260–268.
15. Chen J., Wu Q., Zhang J., Zhang J. Effect of preparation methods on structure and performance of Ni/Ce0.75Zr0.25O2 catalysts for CH4–CO2 reforming. Fuel, 2008, 87, P. 2901–2907.
16. Wu L., Xie X., Ren H., Gao X. A short review on nickel-based catalysts in dry reforming of methane: Influences of oxygen defects on anti-coking property. Mater. Today Proc., 2021, 42 (1), P. 153–160.
17. Safavinia B., Wang Y.M., Jiang C.Y., Roman C., Darapaneni P., Larriviere J., Cullen D.A., Dooley K.M., Dorman J.A. Enhancing CexZr1−xO2 Activity for Methane Dry Reforming Using Subsurface Ni Dopants. ACS Catal., 2020, 10 (7), P. 4070–4079.
18. Pavlova S., Smirnova M., Bobin A., Cherepanova S., Kaichev V., Ishchenko A., Selivanova A., Rogov V., Roger A.-C., Sadykov V. Structural, Textural, and Catalytic Properties of Ni-CexZr1−xO2 Catalysts for Methane Dry Reforming Prepared by Continuous Synthesis in Supercritical Isopropanol. Energies, 2020, 13, 3728.
19. Radlik M., Adamowska-Teyssier M., Krzton’ A., Kozieł K., Krajewski W., Turek W., Costa P.D. Dry Reforming of methane over Ni/Ce0.62Zr0.38O2 catalysts: Effect of Ni loading on the catalytic activity and on H2/CO production. C. R. Chim., 2015, 18, P. 1242–1249.
20. Simonov M., Bespalko Y., Smal E., Valeev K., Fedorova V., Krieger T., Sadykov V. Nickel-Containing Ceria-Zirconia Doped with Ti and Nb. Effect of Support Composition and Preparation Method on Catalytic Activity in Methane Dry Reforming. Nanomaterials, 2020, 10, 1281.
21. Bespalko Y., Smal E., Simonov M., Valeev K., Fedorova V., Krieger T., Cherepanova S., Ishchenko A., Rogov V., Sadykov V. Novel Ni/Ce(Ti)ZrO2 Catalysts for Methane Dry Reforming Prepared in Supercritical Alcohol Media. Energies, 2020, 13, 3365.
22. Fedorova V., Simonov M., Valeev K., Bespalko Y., Smal E., Eremeev N., Sadovskaya E., Krieger T., Ishchenko A., Sadykov V. Kinetic Regularities of Methane Dry Reforming Reaction on Nickel-Containing Modified Ceria-Zirconia. Energies, 2021, 14, 2973.
23. Smal E., Bespalko Y., Arapova M., Fedorova V., Valeev K., Eremeev N., Sadovskaya E., Krieger T., Glazneva T., Sadykov V., et al. Carbon Formation during Methane Dry Reforming over Ni-Containing Ceria-Zirconia Catalysts. Nanomaterials, 2022, 12, 3676.
24. Smal E., Bespalko Y., Arapova M., Fedorova V., Valeev K., Eremeev N., Sadovskaya E., Krieger T., Glazneva T., Sadykov V., Simonov M. Dry Reforming of Methane over 5 % Ni/Ce1−xTixO2 Catalysts Obtained via Synthesis in Supercritical Isopropanol. Int. J. Mol. Sci., 2023, 24, 9680.
25. Arapova M., Smal E., Bespalko Y., Valeev K., Fedorova V., Hassan A., Bulavchenko O., Sadykov V., Simonov M. Methane Dry Reforming Catalysts Based on Pr-Doped Ceria-Zirconia Synthesized in Supercritical Propanol. Energies, 2023, 16, 4729.
26. Zagaynov I., Loktev A., Arashanova A., Ivanov V., Dedov A., Moiseev I. Ni(Co)-Gd0.1Ti0.1Zr0.1Ce0.7O2 mesoporous materials in partial oxidation and dry reforming of methane into synthesis gas. Chem. Eng. J., 2016, 290, P. 193–200.
27. Kim S.S., Lee S.M., Won J.M., Yang H.J., Hong S.C. Effect of Ce/Ti ratio on the catalytic activity and stability of Ni/CeO2–TiO2 catalyst for dry reforming of methane. Chem. Eng. J., 2015, 280, P. 433–440.
28. Azevedo I.R., da Silva A.A.A., Xing Yu.T., Rabelo-Neto R.C., Luchters N.T.J., Fletcher J.C.Q., Noronha F.B., Mattos L.V. Long-term stability of Pt/Ce0.8Me0.2O2−γ/Al2O3 (Me = Gd, Nb, Pr, and Zr) catalysts for steam reforming of methane. Int. J. Hydrogen Energy, 2022, 47, P. 15624–15640.
29. Wang Y., Zhang R., Yan B. Ni/Ce0.9Eu0.1O1.95 with enhanced coke resistance for dry reforming of methane. J. Catal., 2022, 407, P. 77–89.
30. Makri M.M., Vasiliades M.A., Petallidou K.C., Efstathiou A.M. Effect of support composition on the origin and reactivity of carbon formed during dry reforming of methane over 5 wt.% Ni/Ce1−xMxO2-I (M = Zr4+, Pr3+) catalysts. Catal. Today, 2016, 259, P. 150–164.
31. Mastelaro V.R., Briois V., de Souza D.P.F., Silva C.L. Structural studies of a ZrO2–CeO2 doped system. J. Eur. Ceram. Soc., 2003, 23, P. 273–282.
32. Kuznetsova T.G., Sadykov V.A., Moroz E.M., Trukhan S.N., Paukshtis E.A., Kolomiichuk V.N., Burgina E.B., Zaikovskii V.I., Fedotov M.A., Lunin V.V., Kemnitz E. Preparation of Ce–Zr–O composites by a polymerized complex method. Stud. Surf. Sci. Catal., 2002, 143, P. 659–667.
33. Kambolis A., Matralis H., Trovarelli A., Papadopoulou Ch. Ni/CeO2–ZrO2 catalysts for the dry reforming of methane. Appl. Catal. A, 2010, 377, P. 16–26.
34. Montoya J.A., Romero-Pascual E., Gimon C., Del Angel P., Monz´on A. Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol-gel. Catal. Today, 2000, 63, P. 71–85.
35. Luisetto I., Tuti S., Romano C., Boaro M., Di Bartolomeo E., Kesavan J.K., Kumar S.S., Selvakumar K. Dry reforming of methane over Ni supported on doped CeO2: New insight on the role of dopants for CO2 activation. J. CO2 Util., 2019, 30, P. 63–78.
36. Hirano M., Hirai K. Effect of hydrolysis conditions on the direct formation of nanoparticles of ceria-zirconia solid solutions from acidic aqueous solutions. J. Nanopart. Res., 2003, 5, P. 147–156.
37. Pradeep E., Habu T., Tooriyama H., Ohtani M., Kobiro K. Ultra-simple synthetic approach to the fabrication of CeO2–ZrO2 mixed nanoparticles into homogeneous, domain, and core-shell structures in mesoporous spherical morphologies using supercritical alcohols. J. Supercrit. Fluids, 2015, 97, P. 217–223.
38. Basile F., Mafessanti R., Fasolini A., Fornasari G., Lombardi E., Vaccari, A. Effect of synthetic method on CeZr support and catalytic activity of related Rh catalyst in the oxidative reforming reaction. J. Eur. Ceram., 2019, 39, P. 41–52.
39. Manjunatha S., Dharmaprakash M.S. Thermal stability, optical and Photoluminescence properties of spherical CexZr1−xO2 (x = 0.05) crys- talline blue-emitting nanophosphors synthesized by microwave method. Mater. Res. Express, 2018, 5, 035043.
40. Guo J., Xin X., Zhang X., Zhang S. Ultrasonic-induced synthesis of high surface area colloids CeO2–ZrO2. J. Nanopart. Res., 2009, 11, P. 737–741.
41. Khani Y., Bahadoran F., Shariatinia Z., Varmazyari M., Safari N. Synthesis of highly efficient and stable Ni/CexZr1−xGdxO4 and Ni/X–Al2O3 (X = Ce, Zr, Gd, Ce–Zr–Gd) nanocatalysts applied in methane reforming reactions. Ceram. Int., 2020, 46, P. 25122–25135.
42. Lovell E., Horlyck J., Scott J., Amal R. Flame spray pyrolysis-designed silica/ceria-zirconia supports for the carbon dioxide reforming of methane. Appl. Catal., 2017, 546, P. 47–57.
43. Aymonier C., Loppinet-Serani A., Reveron H., Garrabos Y., Cansell F. Review of supercritical fluids in inorganic materials science. J. Supercrit. Fluids, 2006, 38, P. 242–251.
44. Tsybulya S.V., Cherepanova S.V., Soloviyova L.P. Polycrystal software package for IBM/PC. J. Struct. Chem., 1996, 37 (2), P. 332–334.
45. Arapova M., Smal E., Bespalko Yu., Fedorova V., Valeev K., Cherepanova S., Ischenko A., Sadykov V., Simonov M. Ethanol dry reforming over Ni supported on modified ceria-zirconia catalysts: the effect of Ti and Nb dopants. Int. J. Hydrogen Energy, 2021, 46, P. 39236–39250.
46. Luo M., Chen J., Chen L., Lu J., Feng Z., Li C. Structure and Redox Properties of CexTi1-xO2 Solid Solution. Chem. Mater., 2001, 13, P. 197–202.
47. Zhu H., Qin Z., Shan W., Shen W., Wang J. Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents. J. Catal., 2004, 225, P. 267–277.
48. Kim J.R., Myeong W.J., Ihm S.K. Characteristics in oxygen storage capacity of ceria-zirconia mixed oxides prepared by continuous hydrothermal synthesis in supercritical water. Appl. Catal. B, 2007, 71, P. 57–63.
49. Ye J.L., Wang Y.Q., Liu Y., Wang H. Steam reforming of ethanol over Ni/CexTi1−xO2 catalysts. Int. J. Hydrogen Energy, 2008, 33, P. 6602–6611.
50. Shan W., Luo M., Ying P., Shen W., Li C. Reduction property and catalytic activity of Ce1−xNixO2 mixed oxide catalysts for CH4 oxidation. Appl. Catal. A, 2003, 246, P. 1–9.
51. Montoya J.A., Romero-Pascual E., Gimon C., Del Angel P., Monz´on A. Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol-gel. Catal. Today, 2000, 63, P. 71–85.
52. Romero-N´u˜nez A., D´ıaz G. High oxygen storage capacity and enhanced catalytic performance of NiO/NixCe1−xO2−δ nanorods: Synergy between Ni-doping and 1D morphology. RSC Adv., 2015, 5, P. 54571–54579.
53. Sadykov V., Rogov V., Ermakova E., Arendarsky D., Mezentseva N., Alikina G., Sazonova N., Bobin A., Pavlova S., Schuurman Y., Mirodatos C. Mechanism of CH4 dry reforming by pulse microcalorimetry: metal nanoparticles on perovskite/fluorite supports with high oxygen mobility. Thermochim. Acta, 2013, 567, P. 27–34.
54. Pakharukova V.P., Potemkin D.I., Stonkus O.A., Kharchenko N.A., Saraev A.A., Gorlova A.M. Investigation of the Structure and Interface Features of Ni/Ce1−xZrxO2 Catalysts for CO and CO2 Methanation. J. Phys. Chem. C, 2021, 125, P. 20538–20550.
55. Demoulin O., Navez M., Mugabo J.-L., Ruiz P. The oxidizing role of CO2 at mild temperature on ceria-based catalysts. Appl. Catal. B, 2007, 70, P. 284–293.
Review
For citations:
Smal E., Fedorova V., Valeev K., Hassan A., Gerasimov E., Simonov M. Chemical looping methane dry reforming over Ni-containing modified ceria-zirconia. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):879-892. https://doi.org/10.17586/2220-8054-2024-15-6-879-892