Effect of nanostructuring of coprecipitated precursors on the morphology and scintillation properties of multication ceramics with a garnet structure
https://doi.org/10.17586/2220-8054-2024-15-6-893-901
Abstract
Single-phase polycrystalline samples of the (Gd,Y)3Al2Ga3O12:Ce,Tb composition with a garnet structural type were obtained. Using various approaches to the preparation of the initial powders of hydroxycarbonate precursors and compaction methods, the grain size of the ceramics was varied. The scanning electron microscopy method was used to establish the features of the microstructure of the initial powders with different processing temperatures and the microstructure of the resulting ceramics. It is shown that an increase in the grain size of the ceramics and a decrease in the residual porosity gives a noticeable increase in optical transparency in the visible region of the spectrum, in which Ce3+ and Tb3+ ions emit during scintillation. The effect of intergrain boundaries of the ceramics on the diffusion features of nonequilibrium carriers, electrons and holes, as well as excitons formed during the absorption of ionizing radiation on the scintillation yield and energy resolution is considered.
About the Authors
V. G. SmyslovaRussian Federation
Valentina G. Smyslova
Moscow, 123182
V. M. Retivov
Russian Federation
Vasiliy M. Retivov
Moscow, 123182
V. V. Dubov
Russian Federation
Valery V. Dubov
Moscow, 123182
L. V. Ermakova
Russian Federation
Lidia V. Ermakova
Moscow, 123182
V. K. Ivanov
Russian Federation
Vladimir K. Ivanov
Moscow, 119071
P. V. Karpyuk
Russian Federation
Petr V. Karpyuk
Moscow, 123182
I. Yu. Komendo
Russian Federation
Ilya Yu. Komendo
Moscow, 123182
D. E. Lelekova
Russian Federation
Daria E. Lelekova
Moscow, 123182
V. A. Mechinsky
Russian Federation
Vitaly A. Mechinsky
Moscow, 123182
Minsk, 220030
A. N. Vasil’ev
Russian Federation
Andrey N. Vasil’ev
Moscow, 119234
A. S. Ilyushin
Russian Federation
Artemii S. Ilyushin
Moscow, 119234
P. S. Sokolov
Russian Federation
Petr S. Sokolov
Moscow, 123182
M. V. Korzhik
Russian Federation
Mikhail V. Korzhik
Moscow, 123182
Minsk, 220030
References
1. Kaminskii A.A. Laser crystals: their physics and properties. Springer Ser. Opt. Sci., 1990, P. 214.
2. Gektin A., Korzhik M. Inorganic scintillators for detector systems. Berlin: Springer, 2017, P. 20-77.
3. Retivov V., Dubov V., Komendo I., Karpyuk P., Kuznetsova D., Sokolov P., Talochka Y., Korzhik M. Compositionally disordered crystalline compounds for next generation of radiation detectors. Nanomaterials, 2022, 12(23), P. 4295.
4. Kamada K., Endo T., Tsutumi K., Yanagida T., Fujimoto Y., Fukabori A., Yoshikawa A., Pejchal J., Nikl M. Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators. Cryst. Growth Des., 2011, 11(10), P. 4484–4490.
5. Kamada K., Yanagida T., Pejchal J., Nikl M., Endo T., Tsutumi K., Fujimoto Y., Fukabori A., Yoshikawa A. Scintillator-oriented combinatorial search in Ce-doped (Y,Gd)3(Ga,Al)5O12 multicomponent garnet compounds J. Phys. D: Appl. Phys., 2011 44(50), P. 505104.
6. Kamada K., Yanagida T., Endo T., Tsutumi K., Usuki Y., Nikl M., Fujimoto Y., Fukabori A., Yoshikawa A. 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. J. Cryst Growth, 2012, 352(1), P. 88–90.
7. Kurosawa S., Shoji Y., Yokota Y., Kamada K., Chani V., Yoshikawa A. Czochralski growth of Gd3(Al5−xGax)O12 (GAGG) single crystals and their scintillation properties. J. Cryst. Growth, 2014, 393, P. 134–137.
8. Korzhik M., Alenkov V., Buzanov O., Dosovitsky G., Fedorov A., Kozlov D., Mechinsky V., Nargelas S., Tamulaitis G., Vaitkevicius A. Engineering of a new single-crystal multi-ionic fast and high-light-yield scintillation material (Gd0.5–Y0.5)3Al2Ga3O12:Ce,Mg. CrystEngComm, 2020, 22(14), P. 2502–2506.
9. Sakthong O., Chewpraditkul W., Pattanaboonmee N., Chewpraditkul W., Yamaji A., Kamada K., Nikl M. Light yield and timing characteristics of Lu0.8Gd2.2(Al5−xGax)O12: Ce,Mg single crystals. IEEE Transactions on Nuclear Science, 2020, 67(10), P. 2295–2299.
10. Seeley Z., Cherepy N., Payne S. Expanded phase stability of Gd-based garnet transparent ceramic scintillators. J. Mater. Res., 2014, 29(19), P. 2332–2337.
11. Cherepy N., Kuntz J., Roberts J., Hurst T., Drury O., Sanner R., Tillotson T., Payne S. Transparent ceramic scintillator fabrication, properties, and applications. Proc. SPIE, 2008, 7079, P. 263–268.
12. Smyslova V., Kuznetsova D., Bondaray A., Karpyuk P., Korzhik M., Komendo I., Pustovarov V., Retivov V. and Tavrunov D. Advances of the cubic symmetry crystalline systems to create complex, bright luminescent ceramics. Photonics, 2023, 10(5), P. 603.
13. Luo Z., Jiang H., Jiang J. Synthesis of cerium-doped Gd3(Al,Ga)5O12 powder for ceramic scintillators with ultrasonic-assisted chemical coprecipitation method. J. Am. Ceram. Soc., 2013, 96(10), P. 3038–3041.
14. Drozdowski W., Witkowski M., Solarz P., Głuchowski P., Głowacki M., Brylew K. Scintillation properties of Gd3Al2Ga3O12:Ce (GAGG:Ce): a comparison between monocrystalline and nanoceramic samples. Opt. Mater., 2018, 79, P. 227–231.
15. Yang S., Sun Y., Chen X., Zhang Y., Luo Z., Jiang J., Jiang H. The effects of cation concentration in the salt solution on the cerium doped gadolinium gallium aluminum oxide nanopowders prepared by co-precipitation method. IEEE Trans. Nucl. Sci., 2014, 61(1), P. 301–305.
16. Sun Y., Yang S., Zhang Y., Jiang J., Jiang H. Coprecipitation synthesis of gadolinium aluminum gallium oxide (GAGG) via different precipitants. IEEE Trans. Nucl. Sci., 2014, 61(1), P. 306–311.
17. Zhang J., Luo Z., Jiang H., Jiang J., Gui Z., Chen C., Ci M. Sintering of GGAG:Ce3+, xY3+ transparent ceramics in oxygen atmosphere. Ceram. Int., 2017, 43(17), P. 16036–16041.
18. Korzhik M., Alenkov V., Buzanov O., Fedorov A., Dosovitskiy G., Grigorjeva L., Mechinsky V., Sokolov P., Tratsiak Y., Zolotarjovs A., Dormenev V., Dosovitskiy A., Agrawal D., Anniyev T., Vasilyev M., Khabashesku V. Nanoengineered Gd3Al2Ga3O12 scintillation materials with disordered garnet structure for novel detectors of ionizing radiation. Cryst. Res. Technol, 2019, 54(4), P. 1800172.
19. Lamoreaux H., Hildenbrand D., Brewer L. High-temperature vaporization behavior of oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg. J. Phys. Chem. Ref. Data, 1987, 16(3), P. 419–443.
20. Dosovitskiy G., Karpyuk P., Evdokimov P., Kuznetsova D., Mechinsky V., Borisevich A., Fedorov A., Putlayev V., Dosovitskiy A., Korjik M. First 3D-printed complex inorganic polycrystalline scintillator. CrystEngComm, 2017, 19(30), P. 4260–4264.
21. Dosovitskiy G., Dubov V., Karpyuk P., Volkov P., Tamulaitis G., Borisevich A., Vaitkeviˇcius A., Prikhodko K., Kutuzov L., Svetogorov R., Veligzhanin A., Korzhik M. Activator segregation and micro-luminescence properties in GAGG:Ce ceramics. J. Lumin., 2021, 236, P. 118140.
22. Dosovitskiy G., Dubov V., Karpyuk P., Volkov P., Tamulaitis G., Borisevich A., Vaitkeviˇcius A., Prikhodko K., Kutuzov L., Svetogorov R., Veligzhanin A., Korzhik M. Activator segregation and micro-luminescence properties in GAGG:Ce ceramics. J. Lumin., 2021, 236, P. 118140.
23. Kirkin R., Mikhailin V., Vasil’ev A. Recombination of correlated electron-hole pairs with account of hot capture with emission of optical phonons. IEEE Trans. Nucl. Sci., 2012, 59, P. 2057–2064.
24. Vasil’ev A., Korzhik M., Gektin A. Microtheory of scintillation in crystalline materials. Eng. Scint. Mat. Rad. Technol.: Proc. ISMART – Springer Int. Publ., 2017, P. 3-34.
25. Korzhik M., Tamulaitis G., Vasil’ev A. Physics of Fast Processes in Scintillators. Cham : Springer, 2020, 262, P. 250.
26. Vasil’ev A., Gektin A. Multiscale Approach to Estimation of Scintillation Characteristics. IEEE Trans. Nucl. Sci., 2014, 61, P. 235–245.
Review
For citations:
Smyslova V.G., Retivov V.M., Dubov V.V., Ermakova L.V., Ivanov V.K., Karpyuk P.V., Komendo I.Yu., Lelekova D.E., Mechinsky V.A., Vasil’ev A.N., Ilyushin A.S., Sokolov P.S., Korzhik M.V. Effect of nanostructuring of coprecipitated precursors on the morphology and scintillation properties of multication ceramics with a garnet structure. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):893-901. https://doi.org/10.17586/2220-8054-2024-15-6-893-901