Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

SERS substrates based on opal films with gold coating

https://doi.org/10.17586/2220-8054-2024-15-6-902-909

Abstract

Substrates for Surface-Enhanced Raman Spectroscopy (SERS) were fabricated by gold sputtering onto surface of synthetic opal films and their characteristics were studied at wavelengths λ = 532 and 785 nm. Synthetic opal films were fabricated by self-assembly of spherical SiO2 particles on vertical substrates. It was found that at the concentration of the analyte methylene blue equal to 10−5 M the intensity of SERS at the wavelength of 785 nm increased with increasing amount of sputtered gold up to a certain optimal thickness exceeding 35 nm, while at the concentration of 10−6 M this dependence was not observed. It is assumed that this is due to the complex amount-dependent morphology of the sputtered gold coating and the presence of “hot spots” of different strengths. For the best samples at a wavelength of λ = 785 nm, the SERS enhancement factor was of 7·104 and a detection limit for methylene blue reached 3·10−7 M that exceeds the results published for similar substrates previously. The SERS parameters obtained for λ = 532 nm were less attractive, despite the additional enhancement due to this wavelength was at the edge of the photonic stop-band.

About the Authors

M. O. Astafurov
Lomonosov Moscow State University
Russian Federation

Mikhail O. Astafurov

119991 Leninskie gory 1, bld. 3, Moscow



E. V. Perevedentseva
P. N. Lebedev Physical Institute of the Russian Academy of Sciences
Russian Federation

Elena V. Perevedentseva

Leninskii prospekt 53, 119991, Moscow



N. N. Melnik
P. N. Lebedev Physical Institute of the Russian Academy of Sciences
Russian Federation

Nikolay N. Melnik

Leninskii prospekt 53, 119991, Moscow



A. E. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Alexander E. Baranchikov

Leninskii prospekt 31, 119071, Moscow



S. G. Dorofeev
Lomonosov Moscow State University
Russian Federation

Sergey G. Dorofeev

119991 Leninskie gory 1, bld. 3, Moscow



A. A. Ezhov
Lomonosov Moscow State University
Russian Federation

Alexander A. Ezhov

119991 Leninskie gory 1, bld. 3, Moscow



A. V. Grigorieva
Lomonosov Moscow State University
Russian Federation

Anastasia V. Grigorieva

119991 Leninskie gory 1, bld. 3, Moscow



S. O. Klimonsky
Lomonosov Moscow State University
Russian Federation

Sergey O. Klimonsky

119991 Leninskie gory 1, bld. 3, Moscow



References

1. Liang L., Zhao X., Wen J., Liu J., Zhang F., Guo X., Zhang K., Wang A., Gao R., Wang Y., Zhang Y. Flexible SERS Substrate with a Ag–SiO2 Cosputtered Film for the Rapid and Convenient Detection of Thiram. Langmuir, 2022, 38, P. 13753–13762.

2. Varasteanu P., Bujor A.M., Pachiu C., Craciun G., Mihalache I., Tucureanu V., Romanitan C., Pascu R., Boldeiu A. Close-packed small nanocubes assemblies as efficient SERS substrates. J. of Molecular Structure, 2023, 1294, 136441.

3. Zha Z., Liu R., Yang W., Li C., Gao J., Shafi M., Fan X., Li Z., Du X., Jiang S. Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films separated by Al2O3. Optics Express, 2021, 29 (6), P. 8890–8901.

4. Cai Z., Yan Y., Liu L., Lin S., Hu X. Controllable fabrication of metallic photonic crystals for ultra-sensitive SERS and photodetectors. RSC Adv., 2017, 7, P. 55851–55858.

5. He L., Huang J., Xu T., Chen L., Zhang K., Han S., He Y., Lee S.T. Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate. J. Mater. Chem., 2012, 22, P. 1370–1374.

6. Martynova N.A., Goldt A.E., Grigorieva A.V. Au-Au composites with inverse opal structure for surface-enhanced Raman spectroscopy. Gold Bulletin, 2018, 51, P. 57–64.

7. Zhu A., Zhao X., Cheng M., Chen L., Wang Y., Zhang X., Zhang Y., Zhang X. Nanohoneycomb Surface-Enhanced Raman Spectroscopy-Active Chip for the Determination of Biomarkers of Hepatocellular Carcinoma. ACS Appl. Mater. Interfaces, 2019, 11, P. 44617–44623.

8. Guo H., Qian K., Cai A., Tang J., Liu J. Ordered gold nanoparticle arrays on the tip of silver wrinkled structures for single molecule detection. Sensors & Actuators: B. Chemical, 2019, 300, 126846.

9. Ke X., Chen J., Chang L., Zhou Z., Zhang W. Casting liquid PDMS on self-assembled bilayer polystyrene nanospheres to prepare a SERS substrate with two layers of nanopits for detection of p-nitrophenol. Anal. Methods, 2023, 15, P. 4582–4590.

10. Wei M.-X., Liu C.-H., Lee H., Lee B.-W., Hsu C.-H., Lin H.-P., Wu Yu-C. Synthesis of High-Performance Photonic Crystal Film for SERS Applications via Drop-Coating Method. Coatings, 2020, 10, 679.

11. Chen G., Zhang K., Luo B., Hong W., Chen J., Chen X. Plasmonic-3D photonic crystals microchip for surface enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2019, 143, 111596.

12. Chen H., Song C., Peng Z., Mao J., Zhang Y., Chen S., Zhang W., Zhang S., Zhao W., Ouyang G. The Fabrication of Photonic Crystal Microchip with Controllable Wettability and SERS Activity based on Surface Roughness for Trace Organic Compounds Determination. Adv. Mater. Interfaces, 2022, 2102178.

13. Li W., Lu X., Yang R., Liang F., Chen W., Xie Z., Zheng J., Zhu J., Huang Y., Yue W., Li L., Su Y. Highly sensitive and reproducible SERS substrates with binary colloidal crystals (bCCs) based on MIM structures. Applied Surface Science, 2022, 597, 153654.

14. Dzhagan V., Mazur N., Kapush O., Skoryk M., Pirko Y., Yemets A., Dzhahan Vl., Shepeliavyi P., Valakh M., and Yukhymchuk V. Self-Organized SERS Substrates with Efficient Analyte Enrichment in the Hot Spots. ACS Omega, 2024, 9, P. 4819–4830.

15. Galisteo-Lopez J.F., Ibisate M., Sapienza R., Froufe Perez L.S., Blanco A., Lopez C. Self-Assembled Photonic Structures. Adv. Mater., 2011, 23, P. 30–69.

16. Liu J., Zhao H., Wu M., Van der Schueren B., Yu Li, Deparis O., Ye J., Ozin G.A., Hasan T., Su B.-L. Slow Photons for Photocatalysis and Photovoltaics. Adv. Mater., 2017, 29, 1605349.

17. Ashurov M., Abdusatorov B., Baranchikov A., Klimonsky S. Surface-enhanced Raman scattering in ETPTA inverse photonic crystals with gold nanoparticles. Phys. Chem. Chem. Phys., 2021, 23, P. 20275–20281.

18. Jiang P., Bertone J.F., Hwang K.S., Colvin V.L. Single-Crystal Colloidal Multilayers of Controlled Thickness. Chem. Mater., 1999, 11, P. 2132–2140.

19. Klimonsky S.O., Bakhia T., Knotko A.V., Lukashin A.V. Synthesis of Narrow Dispersed SiO2 Colloidal Particles and Colloidal Crystal Films Based on Them. Doklady Chemistry, 2014, 457 (1), P. 115–117.

20. St¨ober W., Fink A., Bohn E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci., 1968, 26, P. 62–69.

21. Bakhia T., Baranchikov A.E., Gorelik V.S., Klimonsky S.O. Local Optical Spectroscopy of Opaline Photonic Crystal Films. Crystallography Reports, 2017, 62 (5), P. 783–786.

22. Le Ru E., Blackie E., Meyer M., Etchegoin P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C, 2007, 111 (37), P. 13794–13803.

23. Yan Q., Zhou Z., Zhao X.S. Inward-Growing Self-Assembly of Colloidal Crystal Films on Horizontal Substrates. Langmuir, 2005, 21 (7), P. 3158–3164.


Review

For citations:


Astafurov M.O., Perevedentseva E.V., Melnik N.N., Baranchikov A.E., Dorofeev S.G., Ezhov A.A., Grigorieva A.V., Klimonsky S.O. SERS substrates based on opal films with gold coating. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):902-909. https://doi.org/10.17586/2220-8054-2024-15-6-902-909

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)