Prolonged antibacterial action of CuO-coated cotton fabric in tropical climate
https://doi.org/10.17586/2220-8054-2024-15-6-910-920
Abstract
The paper reports the results of a large-scale testing of antibacterial textiles with extremely stable and long-lasting copper oxide coating. Using disk diffusion method, ICP-OES and specific lux biosensors it was shown that the coating does not leach copper ions into the environment. Laboratory experiments performed according to the ISO 20743 protocol showed high antibacterial activity of the produced coating, up to complete growth suppression for some strains. The long-term field tests were carried out in a tropical climate, at the Climate test station “Hoa Lac” (Hanoi city, Vietnam). The number of microorganisms on the textile materials remained within the range of 1–3% in comparison with the control sample for the entire duration of the field exposure (12 months).
Keywords
About the Authors
V. V. VeselovaRussian Federation
Varvara O. Veselova
Leninskii prosp., 31, Moscow, 119991
A. N. Kostrov
Russian Federation
Andrey N. Kostrov
Kosygina str. 4, Building 1, Moscow, 119991
V. A. Plyuta
Russian Federation
Vladimir A. Plyuta
Akademika Kurchatova sq. 2, Moscow, 123182
A. A. Kamler
Russian Federation
Anna V. Kamler
Leninskii prosp., 31, Moscow, 119991
R. V. Nikonov
Russian Federation
Roman V. Nikonov
Leninskii prosp., 31, Moscow, 119991
O. E. Melkina
Russian Federation
Olga E. Melkina
Akademika Kurchatova sq. 2, Moscow, 123182
V. Vo Thi Hoai Thu
Viet Nam
Hanoi
L. Le Thi Hue
Viet Nam
Hanoi
D. Dinh Thi Thu Trang
Viet Nam
Hanoi
I. A. Khmel
Russian Federation
Inessa A. Khmel
Kurchatova sq. 2, Moscow, 123182
V. A. Nadtochenko
Russian Federation
Viktor A. Nadtochenko
Kosygina str. 4, Building 1, Moscow, 119991
M. G. Kiselev
Russian Federation
Mikhail G. Kiselev
Akademicheskaya str. 1, Ivanovo 153045
V. K. Ivanov
Russian Federation
Vladimir K. Ivanov
Leninskii prosp., 31, Moscow, 119991
References
1. Bhandari V., Jose S., Badanayak P., Sankaran A., Anandan V. Antimicrobial Finishing of Metals, Metal Oxides, and Metal Composites on Textiles: A Systematic Review. Industrial & Engineering Chemistry Research, 2022, 61, P. 86–101.
2. Borkow G., Gabbay J. Copper as a biocidal tool. Current Medicinal Chemistry, 2005, 12(18), P. 2163–2175.
3. Veselova V.O., Plyuta V.A., Kostrov A.N., Vtyurina D.N., Abramov V.O., Abramova A. V, Voitov Y.I., Padiy D.A., Thu V.T.H., Hue L.T. J., Trang D.T.T., Baranchikov A.E., Khmel I.A., Nadtochenko V.A., Ivanov V.K. Long-Term Antimicrobial Performance of Textiles Coated with ZnO and TiO2 Nanoparticles in a Tropical Climate. Journal of Functional Biomaterials, 2022, 13(4), P. 233.
4. Ashish B., Neeti K., Himanshu K. Copper toxicity: a comprehensive study. Research Journal of Recent Sciences, 2013, 2, P. 58–67.
5. Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of Toxicology, 2013, 87, P. 1181–1200.
6. Vandebriel R.J., De Jong W.H. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnology Science and Applications, 2012, 5, P. 61–71.
7. Singh G., Beddow J., Mee C., Maryniak L., Joyce E.M., Mason T.J. Cytotoxicity Study of Textile Fabrics Impregnated With CuO Nanoparticles in Mammalian Cells. International Journal of Toxicology, 2017, 36, P. 478–484.
8. Borkow G., Okon-Levy N., Gabbay J. Copper Oxide Impregnated Wound Dressing: Biocidal and Safety Studies. Wounds, 2010, 22(12), P. 301.
9. Perelshtein I., Applerot G., Perkas N., Wehrschuetz-Sigl E., Hasmann A., Guebitz G., Gedanken A. CuO–cotton nanocomposite: Formation, morphology, and antibacterial activity. Surface and Coatings Technology, 2009, 204, P. 54–57.
10. Alagarasan D., Harikrishnan A., Surendiran M., Indira K., Khalifa A.S., Elesawy B.H. Synthesis and characterization of CuO nanoparticles and evaluation of their bactericidal and fungicidal activities in cotton fabrics. Applied Nanoscience, 2023, 13(3), P. 1797.
11. Rom´an L.E., Gomez E.D., Sol´ıs J.L., G´omez M.M. Antibacterial Cotton Fabric Functionalized with Copper Oxide Nanoparticles. Molecules, 2020, 25(24), P. 5802.
12. Madkhali O.A. A comprehensive review on potential applications of metallic nanoparticles as antifungal therapies to combat human fungal diseases. Saudi Pharmaceutical Journal, 2023, 31(9), P. 101733.
13. Gabbay J., Borkow G., Mishal J., Magen E., Zatcoff R., Shemer-Avni Y. Copper Oxide Impregnated Textiles with Potent Biocidal Activities. Journal of Industrial Textiles, 2006, 35(4), P. 323–335.
14. Liao C., Li Y., Tjong S.C. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences, 2019, 20, P. 449.
15. Li J., Zheng J., Yu Y., Su Z., Zhang L., Chen X. Facile synthesis of rGO–MoS2–Ag nanocomposites with long-term antimicrobial activities. Nanotechnology, 2020, 31, P. 125101.
16. Ferdous Z., Nemmar A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. International Journal of Molecular Sciences, 2020, 21, P. 2375.
17. Moritz M., Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chemical Engineering Journal, 2013, 228, P. 596–613.
18. Abramov O.V., Gedanken A., Koltypin Y., Perkas N., Perelshtein I., Joyce E., Mason T.J. Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics. Surface and Coatings Technology, 2009, 204, P. 718–722.
19. Abramova A.V., Abramov V.O. Bayazitov V.M., Voitov Y., Straumal E.A., Lermontov S.A., Cherdyntseva T.A., Braeutigam P., Weiße M., G¨unther K. A sol-gel method for applying nanosized antibacterial particles to the surface of textile materials in an ultrasonic field. Ultrasonics Sonochemistry, 2020, 60, P. 104788.
20. Abramova A.V., Abramov V.O., Gedanken A., Perelshtein I., Bayazitov V.M., Beilstein J. An Ultrasonic Technology for Production of Antibacterial Nanomaterials and Their Coating on Textiles. Nanotechnology, 2014, 5, P. 532–536.
21. Giannossa L.C., Longano D., Ditaranto N., Nitti M.A., Paladini F., Pollini M., Rai M., Sannino A., Valentini A., Cioffi N. Metal nanoantimicrobials for textile applications. Nanotechnology Reviews, 2013, 2, P. 307–331.
22. Ehiasarian A., Pulgarin C., Kiwi J. Inactivation of bacteria under visible light and in the dark by Cu films. Advantages of Cu-HIPIMS-sputtered films. Environmental science and pollution research international, 2012, 19, P. 3791–3797.
23. Berendjchi A., Khajavi R., Yazdanshenas M.E. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper. Nanoscale Research Letters, 2011, 6, P. 1–8.
24. Mary G., Bajpai S.K., Chand N. Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. Journal of Applied Polymer Science, 2009, 113, P. 757–766.
25. Grace M., Chand N., Bajpai S.K. Copper Alginate-Cotton Cellulose (CACC) Fibers with Excellent Antibacterial Properties. Journal of Engineered Fibers and Fabric, 2009, 4(3), P. 24–35.
26. Castro C., Sanjines R., Pulgarin C., Osorio P., Giraldo S.A., Kiwi J. Structure–reactivity relations for DC-magnetron sputtered Cu-layers during E. coli inactivation in the dark and under light. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, P. 295–302.
27. Torres A., Ruales C., Pulgarin C., Aimable A., Bowen P., Sarria V., Kiwi J. Innovative high-surface-area CuO pretreated cotton effective in bacterial inactivation under visible light. ACS Applied Materials & Interfaces Journal, 2010, 2, P. 2547–2552.
28. Crookes W.S. On Radiant Matter; a Lecture Delivered to the British Association for the Advancement of Science, at Sheffield, Friday, August 22, 1879.
29. Anita S., Ramachandran T., Rajendran R., Koushik C. V, Mahalakshmi M. A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric. Textile Research Journal, 2011, 81, P. 1081–1088.
30. Thaysen A.C., Bunker H.J., Butlin K.R., Williams L.H. The effect of climatic exposure on textile fibres and fabrics. Annals of Applied Biology, 1939, 26, P. 750–781.
31. Saliani M., Jalal R., Goharshadi E.K. Effects of pH and Temperature on Antibacterial Activity of Zinc Oxide Nanofluid Against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur Journal of Microbiology, 2015, 8(2), P. 17115.
32. Lipovsky A., Nitzan Y., Gedanken A., Lubart R. Antifungal activity of ZnO nanoparticles -the role of ROS mediated cell injury. Nanotechnology, 2011, 22, P. 105101.
33. De Azevedo J.L. Quecine M.C. Diversity and Benefits of Microorganisms from the Tropics, Springer, 2017.
34. Abramova A., Gedanken A., Popov V., Ooi E.-H., Mason T.J., Joyce E.M., Beddow J., Perelshtein I., Bayazitov V. A. A sonochemical technology for coating of textiles with antibacterial nanoparticles and equipment for its implementation. Materials Letters, 2013, 96, P. 121–124.
35. Datsenko K.A., Wanner B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. The Proceedings of the National Academy of Sciences, 2000, 97, P. 6640–6645.
36. De Vasconcelos A.T.R., De Almeida D.F., Hungria M., Guimaraes C.T., Antˆonio R.V., Almeida F.C., De Almeida L.G.P., De Almeida R., Alves-Gomes J.A., Andrade E.M. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. The Proceedings of the National Academy of Sciences U.S.A., 2003, P. 11660–11665.
37. Veselova M., Lipasova V., Protsenko M.A., Buza N., Khmel I.A. GacS-dependent regulation of enzymic and antifungal activities and synthesis of N-acylhomoserine lactones in rhizospheric strain Pseudomonas chlororaphis 449. Folia Microbiologica (Praha), 2009, 54, P. 401–408.
38. Veselova M.A., Klein S.H., Bass I.A., Lipasova V.A., Metlitskaya A.Z., Ovadis M.I., Chernin L.S., Khmel I.A. Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal activity in rhizospheric bacterium pseudomonas chlororaphis 449. Russian Journal of Genetics, 2008, 44, P. 1400–1408.
39. Risti´c T., Zemljiˇc L.F., Novak M., Kunˇciˇc M.K., Sonjak S., Cimerman N.G. Strnad S. Antimicrobial efficiency of functionalized cellulose fibres as potential medical textiles. Science against microbial pathogens: communicating current research and technological advances, 2011, 6, P. 36–51.
40. Melkina O.E., Plyuta V.A., Khmel I.A., Zavilgelsky G.B. The mode of action of cyclic monoterpenes (−)-limonene and (+)-α-pinene on bacterial cells. Biomolecules, 2021, 11(6), P. 806.
41. Plyuta V.A., Sidorova D.E., Zavigelsky G.B., Kotova V.Y., Khmel I.A. Effects of Volatile Organic Compounds Synthesized by Bacteria on the Expression from Promoters of the zntA, copA, and arsR Genes Induced in Response to Copper, Zinc, and Arsenic. Molecular Genetics, Microbiology and Virology, 2020, 35, P. 152–158.
42. Banner D.J., Firlar E., Jakubonis J., Baggia Y., Osborn J.K., Shahbazian-Yassar R., Megaridis C.M., Shokuhfar T. Correlative ex situ and Liquid-Cell TEM Observation of Bacterial Cell Membrane Damage Induced by Rough Surface Topology. International Journal of Nanomedicine, 2020, 15, P. 1929–1938.
43. Jana T.K., Jana S.K., Kumar A., De K., Maiti R., Mandal A.K., Chatterjee T., Chatterjee B.K., Chakrabarti P., Chatterjee K. The antibacterial and anticancer properties of zinc oxide coated iron oxide nanotextured composites. Colloids Surfaces B Biointerfaces, 2019, 177, P. 512–519.
44. Jang Y., Choi W.T., Johnson C.T., Garc´ıa A.J., Singh P.M., Breedveld V., Hess D.W., Champion J.A. Inhibition of Bacterial Adhesion on Nanotextured Stainless Steel 316L by Electrochemical Etching. ACS Biomaterials Science & Engineering Journal, 2018, 4, P. 90–97.
45. Rensing C., Fan B., Sharma R., Mitra B., Rosen B.P. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. The Proceedings of the National Academy of Sciences U.S.A., 2000, 97, P. 652–656.
46. Kairyte K., Kadys A., Luksiene Z. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology B: Biology, 2013, 128, P. 78–84.
47. Ilkhechi N.N., Mozammel M., Khosroushahi A.Y. Antifungal effects of ZnO, TiO2 and ZnO–TiO2 nanostructures on Aspergillus flavus. Pesticide Biochemistry and Physiology, 2021, 176, P. 104869.
48. Eskani I.N., Astuti W., Farida, Haerudin A., Setiawan J., Lestari D.W., Isnaini, Widayatno T. Antibacterial Activities of Synthesised ZnO Nanoparticles Applied on Reactive Dyed Batik Fabrics. The Journal of the Textile Institute, 2022, 113, P. 430–439.
Review
For citations:
Veselova V.V., Kostrov A.N., Plyuta V.A., Kamler A.A., Nikonov R.V., Melkina O.E., Vo Thi Hoai Thu V., Le Thi Hue L., Dinh Thi Thu Trang D., Khmel I.A., Nadtochenko V.A., Kiselev M.G., Ivanov V.K. Prolonged antibacterial action of CuO-coated cotton fabric in tropical climate. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):910-920. https://doi.org/10.17586/2220-8054-2024-15-6-910-920