Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Пролонгированный антибактериальный эффект CuO-покрытия на хлопковых тканях в тропическом климате

https://doi.org/10.17586/2220-8054-2024-15-6-910-920

Аннотация

В статье представлены результаты испытаний антибактериального текстиля со стабильным и долговечным покрытием из оксида меди. С помощью диско-диффузионного метода, ICP-OES и специфических lux-биосенсоров  было показано, что покрытие не выделяет ионы меди в окружающую среду. Лабораторные эксперименты, проведенные в соответствии с протоколом ISO 20743, показали высокую антибактериальную активность полученного покрытия, вплоть до полного подавления роста некоторых штаммов. Длительные полевые испытания проводились в тропическом климате, на климатической испытательной станции “Хоа Лак” (город Ханой, Вьетнам). Количество микроорганизмов на текстильных материалах оставалось в пределах 1-3% по сравнению с контрольным образцом в течение всего срока испытаний (12 месяцев).

Об авторах

В. О. Веселова
N. S. Kurnakov Institute of General and Inorganic Chemistry RAS
Россия


А. Н. Костров
N. N. Semenov Federal Research Center for Chemical Physics
Россия


В. А. Плюта
Complex of NBICS Technologies, National Research Center “Kurchatov Institute”
Россия


А. В. Камлер
N. S. Kurnakov Institute of General and Inorganic Chemistry RAS
Россия


Р. В. Никонов
N. S. Kurnakov Institute of General and Inorganic Chemistry RAS
Россия


О. Е. Мелькина
Complex of NBICS Technologies, National Research Center “Kurchatov Institute”
Россия


В. Во Тхи Хоай Ту
Joint Vietnam-Russia Tropical Science and Technology Research Center
Вьетнам


Л. Ле Тхи Хуе
Joint Vietnam-Russia Tropical Science and Technology Research Center
Вьетнам


Д. Динь Тхи Ту Транг
Joint Vietnam-Russia Tropical Science and Technology Research Center
Вьетнам


И. А. Хмель
Complex of NBICS Technologies, National Research Center “Kurchatov Institute”
Россия


В. А. Надточенко
N. N. Semenov Federal Research Center for Chemical Physics
Россия


М. Г. Киселев
G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Россия


В. К. Иванов
N. S. Kurnakov Institute of General and Inorganic Chemistry RAS
Россия


Список литературы

1. Bhandari V., Jose S., Badanayak P., Sankaran A., Anandan V. Antimicrobial Finishing of Metals, Metal Oxides, and Metal Composites on Textiles: A Systematic Review. Industrial & Engineering Chemistry Research, 2022, 61, P. 86–101.

2. Borkow G., Gabbay J. Copper as a biocidal tool. Current Medicinal Chemistry, 2005, 12(18), P. 2163–2175.

3. Veselova V.O., Plyuta V.A., Kostrov A.N., Vtyurina D.N., Abramov V.O., Abramova A. V, Voitov Y.I., Padiy D.A., Thu V.T.H., Hue L.T. J., Trang D.T.T., Baranchikov A.E., Khmel I.A., Nadtochenko V.A., Ivanov V.K. Long-Term Antimicrobial Performance of Textiles Coated with ZnO and TiO2 Nanoparticles in a Tropical Climate. Journal of Functional Biomaterials, 2022, 13(4), P. 233.

4. Ashish B., Neeti K., Himanshu K. Copper toxicity: a comprehensive study. Research Journal of Recent Sciences, 2013, 2, P. 58–67.

5. Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of Toxicology, 2013, 87, P. 1181–1200.

6. Vandebriel R.J., De Jong W.H. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnology Science and Applications, 2012, 5, P. 61–71.

7. Singh G., Beddow J., Mee C., Maryniak L., Joyce E.M., Mason T.J. Cytotoxicity Study of Textile Fabrics Impregnated With CuO Nanoparticles in Mammalian Cells. International Journal of Toxicology, 2017, 36, P. 478–484.

8. Borkow G., Okon-Levy N., Gabbay J. Copper Oxide Impregnated Wound Dressing: Biocidal and Safety Studies. Wounds, 2010, 22(12), P. 301.

9. Perelshtein I., Applerot G., Perkas N., Wehrschuetz-Sigl E., Hasmann A., Guebitz G., Gedanken A. CuO–cotton nanocomposite: Formation, morphology, and antibacterial activity. Surface and Coatings Technology, 2009, 204, P. 54–57.

10. Alagarasan D., Harikrishnan A., Surendiran M., Indira K., Khalifa A.S., Elesawy B.H. Synthesis and characterization of CuO nanoparticles and evaluation of their bactericidal and fungicidal activities in cotton fabrics. Applied Nanoscience, 2023, 13(3), P. 1797.

11. Rom´an L.E., Gomez E.D., Sol´ıs J.L., G´omez M.M. Antibacterial Cotton Fabric Functionalized with Copper Oxide Nanoparticles. Molecules, 2020, 25(24), P. 5802.

12. Madkhali O.A. A comprehensive review on potential applications of metallic nanoparticles as antifungal therapies to combat human fungal diseases. Saudi Pharmaceutical Journal, 2023, 31(9), P. 101733.

13. Gabbay J., Borkow G., Mishal J., Magen E., Zatcoff R., Shemer-Avni Y. Copper Oxide Impregnated Textiles with Potent Biocidal Activities. Journal of Industrial Textiles, 2006, 35(4), P. 323–335.

14. Liao C., Li Y., Tjong S.C. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences, 2019, 20, P. 449.

15. Li J., Zheng J., Yu Y., Su Z., Zhang L., Chen X. Facile synthesis of rGO–MoS2–Ag nanocomposites with long-term antimicrobial activities. Nanotechnology, 2020, 31, P. 125101.

16. Ferdous Z., Nemmar A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. International Journal of Molecular Sciences, 2020, 21, P. 2375.

17. Moritz M., Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chemical Engineering Journal, 2013, 228, P. 596–613.

18. Abramov O.V., Gedanken A., Koltypin Y., Perkas N., Perelshtein I., Joyce E., Mason T.J. Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics. Surface and Coatings Technology, 2009, 204, P. 718–722.

19. Abramova A.V., Abramov V.O. Bayazitov V.M., Voitov Y., Straumal E.A., Lermontov S.A., Cherdyntseva T.A., Braeutigam P., Weiße M., G¨unther K. A sol-gel method for applying nanosized antibacterial particles to the surface of textile materials in an ultrasonic field. Ultrasonics Sonochemistry, 2020, 60, P. 104788.

20. Abramova A.V., Abramov V.O., Gedanken A., Perelshtein I., Bayazitov V.M., Beilstein J. An Ultrasonic Technology for Production of Antibacterial Nanomaterials and Their Coating on Textiles. Nanotechnology, 2014, 5, P. 532–536.

21. Giannossa L.C., Longano D., Ditaranto N., Nitti M.A., Paladini F., Pollini M., Rai M., Sannino A., Valentini A., Cioffi N. Metal nanoantimicrobials for textile applications. Nanotechnology Reviews, 2013, 2, P. 307–331.

22. Ehiasarian A., Pulgarin C., Kiwi J. Inactivation of bacteria under visible light and in the dark by Cu films. Advantages of Cu-HIPIMS-sputtered films. Environmental science and pollution research international, 2012, 19, P. 3791–3797.

23. Berendjchi A., Khajavi R., Yazdanshenas M.E. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper. Nanoscale Research Letters, 2011, 6, P. 1–8.

24. Mary G., Bajpai S.K., Chand N. Copper (II) ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties. Journal of Applied Polymer Science, 2009, 113, P. 757–766.

25. Grace M., Chand N., Bajpai S.K. Copper Alginate-Cotton Cellulose (CACC) Fibers with Excellent Antibacterial Properties. Journal of Engineered Fibers and Fabric, 2009, 4(3), P. 24–35.

26. Castro C., Sanjines R., Pulgarin C., Osorio P., Giraldo S.A., Kiwi J. Structure–reactivity relations for DC-magnetron sputtered Cu-layers during E. coli inactivation in the dark and under light. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, P. 295–302.

27. Torres A., Ruales C., Pulgarin C., Aimable A., Bowen P., Sarria V., Kiwi J. Innovative high-surface-area CuO pretreated cotton effective in bacterial inactivation under visible light. ACS Applied Materials & Interfaces Journal, 2010, 2, P. 2547–2552.

28. Crookes W.S. On Radiant Matter; a Lecture Delivered to the British Association for the Advancement of Science, at Sheffield, Friday, August 22, 1879.

29. Anita S., Ramachandran T., Rajendran R., Koushik C. V, Mahalakshmi M. A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric. Textile Research Journal, 2011, 81, P. 1081–1088.

30. Thaysen A.C., Bunker H.J., Butlin K.R., Williams L.H. The effect of climatic exposure on textile fibres and fabrics. Annals of Applied Biology, 1939, 26, P. 750–781.

31. Saliani M., Jalal R., Goharshadi E.K. Effects of pH and Temperature on Antibacterial Activity of Zinc Oxide Nanofluid Against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur Journal of Microbiology, 2015, 8(2), P. 17115.

32. Lipovsky A., Nitzan Y., Gedanken A., Lubart R. Antifungal activity of ZnO nanoparticles -the role of ROS mediated cell injury. Nanotechnology, 2011, 22, P. 105101.

33. De Azevedo J.L. Quecine M.C. Diversity and Benefits of Microorganisms from the Tropics, Springer, 2017.

34. Abramova A., Gedanken A., Popov V., Ooi E.-H., Mason T.J., Joyce E.M., Beddow J., Perelshtein I., Bayazitov V. A. A sonochemical technology for coating of textiles with antibacterial nanoparticles and equipment for its implementation. Materials Letters, 2013, 96, P. 121–124.

35. Datsenko K.A., Wanner B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. The Proceedings of the National Academy of Sciences, 2000, 97, P. 6640–6645.

36. De Vasconcelos A.T.R., De Almeida D.F., Hungria M., Guimaraes C.T., Antˆonio R.V., Almeida F.C., De Almeida L.G.P., De Almeida R., Alves-Gomes J.A., Andrade E.M. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. The Proceedings of the National Academy of Sciences U.S.A., 2003, P. 11660–11665.

37. Veselova M., Lipasova V., Protsenko M.A., Buza N., Khmel I.A. GacS-dependent regulation of enzymic and antifungal activities and synthesis of N-acylhomoserine lactones in rhizospheric strain Pseudomonas chlororaphis 449. Folia Microbiologica (Praha), 2009, 54, P. 401–408.

38. Veselova M.A., Klein S.H., Bass I.A., Lipasova V.A., Metlitskaya A.Z., Ovadis M.I., Chernin L.S., Khmel I.A. Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal activity in rhizospheric bacterium pseudomonas chlororaphis 449. Russian Journal of Genetics, 2008, 44, P. 1400–1408.

39. Risti´c T., Zemljiˇc L.F., Novak M., Kunˇciˇc M.K., Sonjak S., Cimerman N.G. Strnad S. Antimicrobial efficiency of functionalized cellulose fibres as potential medical textiles. Science against microbial pathogens: communicating current research and technological advances, 2011, 6, P. 36–51.

40. Melkina O.E., Plyuta V.A., Khmel I.A., Zavilgelsky G.B. The mode of action of cyclic monoterpenes (−)-limonene and (+)-α-pinene on bacterial cells. Biomolecules, 2021, 11(6), P. 806.

41. Plyuta V.A., Sidorova D.E., Zavigelsky G.B., Kotova V.Y., Khmel I.A. Effects of Volatile Organic Compounds Synthesized by Bacteria on the Expression from Promoters of the zntA, copA, and arsR Genes Induced in Response to Copper, Zinc, and Arsenic. Molecular Genetics, Microbiology and Virology, 2020, 35, P. 152–158.

42. Banner D.J., Firlar E., Jakubonis J., Baggia Y., Osborn J.K., Shahbazian-Yassar R., Megaridis C.M., Shokuhfar T. Correlative ex situ and Liquid-Cell TEM Observation of Bacterial Cell Membrane Damage Induced by Rough Surface Topology. International Journal of Nanomedicine, 2020, 15, P. 1929–1938.

43. Jana T.K., Jana S.K., Kumar A., De K., Maiti R., Mandal A.K., Chatterjee T., Chatterjee B.K., Chakrabarti P., Chatterjee K. The antibacterial and anticancer properties of zinc oxide coated iron oxide nanotextured composites. Colloids Surfaces B Biointerfaces, 2019, 177, P. 512–519.

44. Jang Y., Choi W.T., Johnson C.T., Garc´ıa A.J., Singh P.M., Breedveld V., Hess D.W., Champion J.A. Inhibition of Bacterial Adhesion on Nanotextured Stainless Steel 316L by Electrochemical Etching. ACS Biomaterials Science & Engineering Journal, 2018, 4, P. 90–97.

45. Rensing C., Fan B., Sharma R., Mitra B., Rosen B.P. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. The Proceedings of the National Academy of Sciences U.S.A., 2000, 97, P. 652–656.

46. Kairyte K., Kadys A., Luksiene Z. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. Journal of Photochemistry and Photobiology B: Biology, 2013, 128, P. 78–84.

47. Ilkhechi N.N., Mozammel M., Khosroushahi A.Y. Antifungal effects of ZnO, TiO2 and ZnO–TiO2 nanostructures on Aspergillus flavus. Pesticide Biochemistry and Physiology, 2021, 176, P. 104869.

48. Eskani I.N., Astuti W., Farida, Haerudin A., Setiawan J., Lestari D.W., Isnaini, Widayatno T. Antibacterial Activities of Synthesised ZnO Nanoparticles Applied on Reactive Dyed Batik Fabrics. The Journal of the Textile Institute, 2022, 113, P. 430–439.


Рецензия

Для цитирования:


Веселова В.О., Костров А.Н., Плюта В.А., Камлер А.В., Никонов Р.В., Мелькина О.Е., Во Тхи Хоай Ту В., Ле Тхи Хуе Л., Динь Тхи Ту Транг Д., Хмель И.А., Надточенко В.А., Киселев М.Г., Иванов В.К. Пролонгированный антибактериальный эффект CuO-покрытия на хлопковых тканях в тропическом климате. Наносистемы: физика, химия, математика. 2024;15(6):910-920. https://doi.org/10.17586/2220-8054-2024-15-6-910-920

For citation:


Veselova V.V., Kostrov A.N., Plyuta V.A., Kamler A.A., Nikonov R.V., Melkina O.E., Vo Thi Hoai Thu V., Le Thi Hue L., Dinh Thi Thu Trang D., Khmel I.A., Nadtochenko V.A., Kiselev M.G., Ivanov V.K. Prolonged antibacterial action of CuO-coated cotton fabric in tropical climate. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):910-920. https://doi.org/10.17586/2220-8054-2024-15-6-910-920

Просмотров: 7


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)