Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Influence of using different types of microreactors on the formation of nanocrystalline BiFeO3

https://doi.org/10.17586/2220-8054-2023-14-1-120-126

Abstract

The influence of the coprecipitation of bismuth and iron hydroxides in microreactors of various types on the formation of nanocrystalline bismuth orthoferrite during the heat treatment of the deposit was described. Free impinging-jets microreactor, microreactor with submerged jets, microreactor with intensively swirling flows were used. It was revealed that nanocrystalline bismuth orthoferrite with the smallest weighted average crystallite size of 12 nm is formed when a microreactor with tangentially swirling flows of reagent solutions is used for coprecipitation of hydroxides. The minimum size of BiFeO3 crystallites according to transmission electron microscopy data is determined as 3–4 nm.

About the Authors

O. V. Proskurina
Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation

Olga V. Proskurina,

194021 St. Petersburg.



R. Sh. Abiev
Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation

Rufat Sh. Abiev,

194021 St. Petersburg.



V. N. Nevedomskiy
Ioffe Institute
Russian Federation

Vladimir N. Nevedomskiy,

194021 St. Petersburg.



References

1. Kushwaha A.K., John M., Misra M., Menezes P.L. Nanocrystalline Materials: Synthesis, Characterization, Properties, and Applications. Crystals, 2021, 11(11), P. 1317.

2. Wongkaew N., Simsek M., Griesche C., Baeumner A.J. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chemical Reviews, 2019, 119(1), P. 120–194.

3. Gupta D., Varghese B.S., Suresh M., Panwar C., Gupta T.K. Nanoarchitectonics: functional nanomaterials and nanostructures – a review. Journal of Nanoparticle Research, 2022, 24, P. 196.

4. Lomanova N.A., Panchuk V.V., Semenov V.G., Pleshakov I.V., Volkov M.P., Gusarov V.V. Bismuth orthoferrite nanocrystals: magnetic characteristics and size effects. Ferroelectrics, 2020, 569(1), P. 240–250.

5. Wang N., Luo X., Han L., Zhang Z., Zhang R., Olin H., Yang Y. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Letters, 2020, 12, P. 81.

6. Aishwarya K., Hannah Jeniffer I., Maruthasalamoorthy S., Nirmala R., Punithavelan N., Navamathavan R. Review State of the Art of the Multifunctional Bismuth Ferrite: Synthesis Method and Applications. ECS Journal of Solid State Science and Technology, 2022, 11(4), P. 043010.

7. Kim S., Nam H., Calisir I. Lead-Free BiFeO3-Based Piezoelectrics: A Review of Controversial Issues and Current Research State. Materials, 2022, 15(13), P. 4388.

8. Gao T., Chen Z., Huang Q., Niu F., Huang X., Qin L., Huang Y. A review: preparation of bismuth ferrite nanoparticles and its applications in visible-light induced photocatalyses. Reviews on Advanced Materials Science, 2015, 40(2), P. 97–109.

9. Irfan S., Zhuanghao Z., Li F., Chen Y.-X., Liang G.-X., Luo J.-T., Ping F. Critical review: Bismuth ferrite as an emerging visible light active nanostructured photocatalyst. Journal of Materials Research and Technology, 2019, 8(6), P. 6375–6389.

10. Chien S.-W. C., Ng D.-Q., Kumar D., Lam S.-M., Jaffari Z.H. Investigating the effects of various synthesis routes on morphological, optical, photoelectrochemical and photocatalytic properties of single-phase perovskite BiFeO3. Journal of Physics and Chemistry of Solids, 2022, 160, P. 110342.

11. Egorysheva A.V., Kraev A.S., Gajtko O.M., Baranchikov A.E., Agafonov A.V., Ivanov V.K. Electrorheological Fluids Based on Bismuth Ferrites BiFeO3 and Bi2Fe4O9. Russian Journal of Inorganic Chemistry, 2020, 65(8), P. 1253–1263.

12. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special Features of Formation of Nanocrystalline BiFeO3 via the Glycine-Nitrate Combustion Method. Russian Journal of General Chemistry, 2016, 86(10), P. 2256–2262.

13. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Ugolkov V.L., Panchuk V.V., Semenov V.G., Pleshakov I.V., Volkov M.P., Gusarov V.V. Thermal and magnetic behavior of BiFeO3 nanoparticles prepared by glycine-nitrate combustion. Journal of Nanoparticle Research, 2018, 20, P. 17.

14. Lomanova N.A., Tomkovich M.V., Danilovich D.P., Osipov A.V., Panchuk V.V., Semenov V.G., Pleshakov I.V., Volkov M.P., Gusarov V.V. Magnetic Characteristics of Nanocrystalline BiFeO3-Based Materials Prepared by Solution Combustion Synthesis. Inorganic Materials, 2020, 56(12), P. 1271–1277.

15. Verma R., Chauhan A., Neha, Batoo K.M., Kumar R., Hadhi M., Raslan E.H. Effect of calcination temperature on structural and morphological properties of bismuth ferrite nanoparticles. Ceramics International, 2021, 47(3), P. 3680–3691.

16. Mhamad S.A., Ali A.A., Mohtar S.S., Aziz F., Aziz M., Jaafar J., Yusof N., Salleh W.N.W., Ismail A.F., Chandren S. Synthesis of bismuth ferrite by sol-gel auto combustion method: Impact of citric acid concentration on its physicochemical properties. Materials Chemistry and Physics, 2022, 282, P. 125983.

17. Asefi N., Masoudpanah S.M., Hasheminiasari M. Photocatalytic performances of BiFeO3 powders synthesized by solution combustion method: The role of mixed fuels. Materials Chemistry and Physics, 2019, 228, P. 168–174.

18. Parvathy N.S., Govindaraj R. Atomic scale insights on the growth nanoparticles of BiFeO3 nanoparticles. Scientific Reports, 2022, 12, P. 4758.

19. Alikhanov N.M.-R., Rabadanov M.Kh., Orudzhev F.F., Gadzhimagomedov S.Kh., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. Size-dependent structural parameters, optical, and magnetic properties of facile synthesized pure-phase BiFeO3. Journal of Materials Science: Materials in Electronics, 2021, 32, P. 13323–13335.

20. Ortiz-Quinonez J.-L., Pal U., Villanueva M.S. Effects of Oxidizing/Reducing Agent Ratio on Phase Purity, Crystallinity, and Magnetic Behavior˜ of Solution-Combustion-Grown BiFeO3 Submicroparticles. Inorganic Chemistry, 2018, 57(10), P. 6152–6160.

21. Proskurina O.V., Tomkovich M.V., Bachina A.K., Sokolov V.V., Danilovich D.P., Panchuk V.V., Semenov V.G., Gusarov V.V. Formation of Nanocrystalline BiFeO3 under Hydrothermal Conditions. Russian Journal of General Chemistry, 2017, 87(11), P. 2507–2515.

22. Rouhani Z., Karimi-Sabet J., Mehdipourghazi M., Hadi A., Dastbaz A. Response surface optimization of hydrothermal synthesis of Bismuth ferrite nanoparticles under supercritical water conditions: Application for photocatalytic degradation of Tetracycline. Environmental Nanotechnology, Monitoring & Management, 2019, 11, P. 100198.

23. Wang Z.-B., Aldalbahi A., Ahamad T., Alshehri S.M., Feng P.X. Preparation of BiFeO3 and its photoelectric performance as photoanode of DSSC. Ceramics International, 2021, 47(19), P. 27565–27570.

24. Duan Q., Kong F., Han X., Jiang Y., Liu T., Chang Y., Zhou L., Qin G., Zhang X. Synthesis and characterization of morphology-controllable BiFeO3 particles with efficient photocatalytic activity. Materials Research Bulletin, 2019, 112, P. 104–108.

25. Xu Y., Gao Y., Xing H., Zhang J. Room temperature spontaneous exchange bias in BiFeO3 micro/nano powders synthesized by hydrothermal method. Ceramics International, 2018, 44(14), P. 17459–17463.

26. Huang J., Tan G., Yang W., Zhang L., Ren H., Xia A. Microwave hydrothermal synthesis of BiFeO3: Impact of different surfactants on the morphology and photocatalytic properties. Materials Science in Semiconductor Processing, 2014, 25, P. 84–88.

27. da Cruz Severo E., Dotto G.L., Silvestri S., dos Santos Nunes I., da Silveira Salla J., Martinez-de la Cruz A., da Boit Martinello K., Foletto E.L. Improved catalytic activity of EDTA–modified BiFeO3 powders for remarkable degradation of procion red by heterogeneous photo–Fenton process. Journal of Environmental Chemical Engineering, 2020, 8(4), P. 103853.

28. Morozov M.I., Lomanova N.A., Gusarov V.V. Specific features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides. Russian Journal of General Chemistry, 2003, 73, P. 1676–1683.

29. Lomanova N.A., Gusarov V.V. Influence of synthesis temperature on BiFeO3 nanoparticles formation. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4(5), P. 696–705.

30. Tuluk A., Brouwer H., van der Zwaag S. Controlling the Oxygen Defects Concentration in a Pure BiFeO3 Bulk Ceramic. Materials, 2022, 15, P. 6509.

31. Rojac T., Bencan A., Malic B., Tutuncu G., Jones J.L., Daniels J.E., Damjanovic D. BiFeO3 Ceramics: Processing, Electrical, and Electromechanical Properties. Journal of the American Ceramic Society, 2014, 97(7), P. 1993–2011.

32. Yao Y., Ploss B., Mak C.L., Wong K.H. Pyroelectric properties of BiFeO3 ceramics prepared by a modified solid-state-reaction method. Applied Physics A, 2010, 99, P. 211–216.

33. Han H., Lee J.H., Jang H.M. Low-Temperature Solid-State Synthesis of High-Purity BiFeO3 Ceramic for Ferroic Thin-Film Deposition. Inorganic Chemistry, 2017, 56(19), P. 11911–11916.

34. Carranza-Celis D., Cardona-Rodr´ıguez A., Narvaez J., Moscoso-Londono O., Muraca D., Knobel M., Ornelas-Soto N., Reiber A., Ram´ ´ırez J.G. Control of Multiferroic properties in BiFeO3 nanoparticles. Scientific Reports, 2019, 9, P. 3182.

35. Gil-Gonzalez E., Perej´ on A., S´ onchez-Jim´ enez P.E., Sayagu´ es M.J., Raj R., P´ erez-Maqueda L.A. Phase-pure BiFeO´ 3 produced by reaction flashsintering of Bi2O3 and Fe2O3. Journal of Materials Chemistry A, 2018, 6(13), P. 5356–5366.

36. Selbach S.M., Einarsrud M.-A., Grande T. On the Thermodynamic Stability of BiFeO3. Chemistry of Materials, 2009, 21(1), P. 169–173.

37. Perdomo C.P.F., Suarez A.V., Gunnewiek R.F.K., Kiminami R.H.G.A. Low temperature synthesis of high purity nanoscaled BiFeO3 by a fast polymer solution method and their ferromagnetic behavior. Journal of Alloys and Compounds, 2020, 849, P. 156564.

38. Silva J., Reyes A., Esparza H., Camacho H., Fuentes L. BiFeO3: A Review on Synthesis, Doping and Crystal Structure. Integrated Ferroelectrics, 2011, 126(1), P. 47–59.

39. Denisov V.M., Belousova N.V., Zhereb V.P. Denisova L.T., Skorikov V.M. Oxide Compounds of Bi2O3–Fe2O3 System I. The Obtaining and Phase Equilibriums. Journal of Siberian Federal University. Chemistry, 2012, 5(2), P. 146–167.

40. Pikula T., Szumiata T., Siedliska K., Mitsiuk V.I., Panek R., Kowalczyk M., Jartych E. The Influence of Annealing Temperature on the Structure and Magnetic Properties of Nanocrystalline BiFeO3 Prepared by Sol–Gel Method. Metallurgical and Materials Transactions A, 2022, 53, P. 470–483.

41. Stankiewicz A.I., Moulijn J.A. Process intensification: Transforming chemical engineering. Chemical Engineering Progress, 2000, 96(1), P. 22–34.

42. Abiev R.Sh., Almjasheva O.V., Popkov V.I., Proskurina O.V. Microreactor synthesis of nanosized particles: The role of micromixing, aggregation, and separation processes in heterogeneous nucleation. Chemical Engineering Research and Design, 2022, 178, P. 73–94.

43. Marchisio D.L., Rivautella L., Barresi A.A. Design and Scale-Up of Chemical Reactors for Nanoparticle Precipitation. AIChE Journal, 2006, 52(5), P. 1877–1887.

44. Kumar R.D.V., Prasad B.L.V., Kulkarni A.A. Impinging Jet Micromixer for Flow Synthesis of Nanocrystalline MgO: Role of Mixing/Impingement Zone. Industrial Engineering Chemistry Research, 2013, 52(49), P. 17376–17382. ´

45. Abiev R.Sh., Al’myasheva O.V., Gusarov V.V., Izotova S.G. Method of producing nanopowder of cobalt ferrite and microreactor to this end. RF Patent 2625981, Bull. N 20, 20.07.2017. https://patents.google.com/patent/RU2625981C1/en.

46. Abiev R.S., Almyasheva O.V., Izotova S.G., Gusarov V.V. Synthesis of cobalt ferrite nanoparticles by means of confined impinging-jets reactors. Journal Chemical Technology and Applications, 2017, 1(1), P. 7–13.

47. Abiev R.S. Impinging-Jets Micromixers and Microreactors: State of the Art and Prospects for Use in the Chemical Technology of Nanomaterials (Review). Theoretical Foundations of Chemical Engineering, 2020, 54(6), P. 1131–1147.

48. Johnson B.K., Prud’homme R.K. Chemical Processing and Micromixing in Confined Impinging Jets. AIChE Journal, 2003, 49(9), P. 2264–2282.

49. Bałdyga J., Jasinska M., Orciuch W. Barium Sulphate Agglomeration in a Pipe – An Experimental Study and CFD Modeling.´ Chemical Engineering & Technology, 2003, 26(3), P. 334–340.

50. Almjasheva O.V., Popkov V.I., Proskurina O.V., Gusarov V.V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosystems: Physics, Chemistry, Mathematics, 2022, 13(2), P. 164–180.

51. Proskurina O.V., Sokolova A.N., Sirotkin A.A., Abiev R.Sh., Gusarov V.V. Role of Hydroxide Precipitation Conditions in the Formation of Nanocrystalline BiFeO3. Russian Journal of Inorganic Chemistry, 2021, 66(2), P. 163–169.

52. Proskurina O.V., Nogovitsin I.V., Il’ina T.S., Danilovich D.P., Abiev R.Sh., Gusarov V.V. Formation of BiFeO3 Nanoparticles Using Impinging Jets Microreactor. Russian Journal of General Chemistry, 2018, 88(10), P. 2139–2143.

53. Proskurina O.V., Abiev R.S., Danilovich D.P., Panchuk V.V., Semenov V.G., Nevedomsky V.N., Gusarov V.V. Formation of nanocrystalline BiFeO3 during heat treatment of hydroxides co-precipitated in an impinging-jets microreactor. Chemical Engineering and Processing – Process Intensification, 2019, 143, P. 107598.

54. Almyasheva O.V., Lomanova N.A., Popkov V.I., Proskurina O.V., Tugova E.A., Gusarov V.V. The minimal size of oxide nanocrystals: phenomenological thermodynamic vs crystal-chemical approaches. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(4), P. 428–437.

55. Abiev R.S., Sirotkin A.A. Effect of Hydrodynamic Conditions on Micromixing in Impinging-Jets Microreactors. Theoretical Foundations of Chemical Engineering, 2022, 56(1), P. 9–22.

56. Abiev R.Sh., Makusheva I.V. Effect of Macro- and Micromixing on Processes Involved in Solution Synthesis of Oxide Particles in Microreactors with Intensively Swirling Flows. Theoretical Foundations of Chemical Engineering, 2022, 56(2), P. 141–151.

57. Abiev R.Sh., Makusheva I.V. Energy Dissipation Rate and Micromixing in a Two-Step Micro-Reactor with Intensively Swirled Flows. Micromachines, 2022, 13(11), P. 1859.


Review

For citations:


Proskurina O.V., Abiev R.Sh., Nevedomskiy V.N. Influence of using different types of microreactors on the formation of nanocrystalline BiFeO3. Nanosystems: Physics, Chemistry, Mathematics. 2023;14(1):120-126. https://doi.org/10.17586/2220-8054-2023-14-1-120-126

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)