Природные полифенолы как потенциальные антибактериальные агенты и их системы доставки наноразмерного уровня
https://doi.org/10.17586/2220-8054-2024-15-6-936-949
Аннотация
Бактериальные инфекции, вызванные патогенами с множественной лекарственной устойчивостью, представляют серьезную опасность как для людей, так и для сельскохозяйственных животных. По этой причине природные биологически активные вещества (БАВ), в частности полифенолы, обладающие широким спектром биологической активности, могут стать перспективными молекулами для эффективной антибактериальной терапии. Несмотря на потенциально высокую антибактериальную активность и другие полезные биологические эффекты, использование таких БАВ затруднено из-за их низкой растворимости в воде. Для преодоления этой проблемы используются различные подходы, например, «загрузка» (инкапсулирование) БАВ в наноразмерные системы доставки (наночастицы, нанокапсулы, мицеллы и т.д.). Такие подходы позволяют не только повысить эффективность природных БАВ, но и обеспечить их адресное (локальное) действие, что важно при лечении бактериальных заболеваний, а в некоторых случаях приводят к синергическому действию. В данном обзоре описаны антибактериальные свойства наиболее перспективных полифенолов и ключевые подходы к их доставке на наноразмерном уровне, а также методы их разработки.
Об авторах
В. И. КлимшинаРоссия
Владислава Игоревна Климшина
Р. О. Шайкенов
Россия
Роман Олегович Шайкенов
С. Н. Морозкина
Россия
Светлана Николаевна Морозкина
А. Е. Романов
Россия
Алексей Евгеньевич Романов
П. П. Снетков
Россия
Петр Петрович Снетков
Список литературы
1. Miller W.R., Arias C.A. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol., 2024, 22(10), P. 598–616.
2. Zagoskina N.V. Nazarenko L.V. Secondary Plant Metabolites: Distribution, History of Study, Practical Application. MCU J. Nat. Sci., 2019, 2(34), P. 8–19.
3. Hartmann T. The lost origin of chemical ecology in the late 19th century. Proc. Natl. Acad. Sci. USA, 2008, 105 (12), P. 4541–4546.
4. Kırmusaoˇglu S. Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods. Intechopen eBooks, 2019, 152 p.
5. Boccolini P.M.M., de Lima S´ırio Boclin K., de Sousa I.M. C., Boccolini C.S. Prevalence of complementary and alternative medicine (CAM) use in Brazil: results of the National Health Survey, 2019. BMC Complement. Med. Ther., 2022, 20, 205.
6. Khameneh B., Iranshahy M., Soheili V. Fazly Bazzaz B.S. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob. Resist. Infect. Control, 2019, 8, P. 118.
7. Zvereva V.V., Boychenko M.N. Fundamentals of microbiology and immunology. GEOTAR-Media, Moscow, 2021, 368 p.
8. Stan D., Enciu A.-M., Mateescu A.L., Ion A.C., Brezeanu A.C., Stan D., Tanase C. Natural Compounds With Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front. Pharmacol., 2021, 12, P. 723233.
9. Varaprasad B. Antimicrobial Agents. Intechopen, Rijeka, 2012, 434 p.
10. Singla R.K., Dubey A.K., Garg A., Sharma R.K., Fiorino M., Ameen S.M., Haddad M.A., Al-Hiary M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int., 2019, 102(5), P. 1397–1400.
11. Khoddami A., Wilkes M.A., Roberts T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules, 2013, 18(2), P. 2328–2375.
12. Mendonc¸a E.L.S.S., Xavier J.A., Fragoso M.B.T., Silva M.O., Escodro P.B., Oliveira A.C.M., Tucci P., Saso L., Goulart M.O.F. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals, 2024, 17, P. 232.
13. Li Y., Xie S., Ying J., Wei W., Gao K. Chemical Structures of Lignans and Neolignans Isolated from Lauraceae. Molecules, 2018, 23, P. 3164.
14. Manso T., Lores M., de Miguel T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics, 2022, 11(1), P. 46.
15. Vyas A., Syeda K., Ahmad A., Padhye S., Sarkar F.H. Perspectives on medicinal properties of mangiferin. Mini-Rev. Med. Chem., 2012, 12(5), P. 412–425.
16. Barreto J.C., Trevisan M.T., Hull W.E., Erben G., Brito E.S., Pfundstein B., W¨urtele G., Spiegelhalder B., Owen R.W. Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). J. Agric. Food Chem., 2008, 56(14), P. 5599–5610.
17. Pang C., Tian H., Guo X., Wang P., Han B., Yang X. Facile extraction of high-purity mangiferin from mango industrial wastes. J. Chin. Pharm. Sci., 2021, 30(10), P. 831–837.
18. Bhatia V.K., Ramanathan J.D., Seshadri T.R. Constitution of mangiferin. Tetrahedron, 1967, 23(3), P. 1363–1368.
19. Jangra A., Arora M.K., Kisku A., Sharma S. The multifaceted role of mangiferin in health and diseases: a review. Advances in Traditional Medicine, 2020, 21(3), P. 619–643.
20. Patel K., Nixon R. Irritant Contact Dermatitis - a Review. Curr. Dermatol. Rep., 2022, 11(2), P. 41–51.
21. Zhao Y., Wang W., Wu X., Ma X., Qu R., Chen X., Liu C., Liu Y., Wang X., Yan P., Zhang H., Pan J., Li W. Mangiferin antagonizes TNF-α mediated inflammatory reaction and protects against dermatitis in a mice model. Int. Immunopharmacol., 2017, 45, P. 174–179.
22. Ochocka R., Hering A., Stefanowicz-Hajduk J., Cal K., Baranska H. The effect of mangiferin on skin: penetration, permeation and inhibition of ECM enzymes. PLOS ONE, 2017, 12(7), P. e0181542.
23. Karomatov I.D., Atamuradova Sh.T. Anti-inflammatory, antioxidant, immunomodulatory properties of turmeric. Biol. Integr. Med., 2018, 2(19), P. 117–131.
24. Fu Y.-S., Chen T.-H., Weng L., Huang L., Lai D., Weng C.-F. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed. & Pharmacother., 2021, 141, P. 111888.
25. Utz S.R., Talnikova E.E. Use of curcumin in dermatology. Saratov Sci. Med. J., 2016, 12(3), P. 484–487.
26. Singala R.K., Dubey A.K. Phytochemical Profiling, GC-MS Analysis and α-Amylase Inhibitory Potential of Ethanolic Extract of Cocos nucifera Linn. Endocarp. Endocr. Metab. & Immune Disord.: Drug Targets, 2019, 19(4), P. 419–442.
27. Bankar G.R., Nayak P.G., Bansal P., Paul P., Pai K.S., Singla R.K., Bhat V.G. Vasorelaxant and antihypertensive effect of Cocos nucifera Linn. endocarp on isolated rat thoracic aorta and DOCA salt-induced hypertensive rats. J. Ethnopharmacol., 2011, 134(1), P. 50–54.
28. Hitl M., Kladar N., Gavaric N., Bozin B. Rosmarinic Acid–Human Pharmacokinetics and Health Benefits. Planta Medica, 2021, 87(4), P. 273–282.
29. Petersen M., Abdullah Y., Benner J., Eberle D., Gehlen K., Hucherig S., Janiak V., Kim K.H., Sander M., Weitzel C., Wolters S. Evolution of rosmarinic acid biosynthesis. Phytochemistry, 2009, 70, P. 1663–1679.
30. Noor S., Mohammad T., Rub M.A., Raza A., Azum N., Yadav D.K., Hassan M.I., Asiri A.M. Biomedical features and therapeutic potential of rosmarinic acid. Arch. Pharm. Res., 2022, 45, P. 205–228.
31. Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Natural Products: Insight from Rosemary Diterpenes, Carnosic Acid and Carnosol. Biomedicines, 2023, 11(2), P. 545.
32. Bahri S., Jameleddine S., Shlyonsky V. Relevance of carnosic acid to the treatment of several health disorders: Molecular targets and mechanisms. Biomed. & Pharmacother., 2016, 84, P. 569–582.
33. Asokan G.V., Ramadhan T., Ahmed E., Sanad H. WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Med. J., 2019, 34(3), P. 184–193.
34. Mulani M.S., Kambale E.E., Kumkar S.N., Tawre M.S., Pardesi K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol., 2019, 10, P. 539.
35. Arunajatesan S., Krishna M., Sivan P., Kesavaram P., Paramasivam V., Ganapathy S.V. Antibacterial efficacy of Mangifera indica L. kernel and Ocimum sanctum L. leaves against Enterococcus faecalis dentinal biofilm. J. Conserv. Dent., 2013, 16(5), P. 454–457.
36. Moradi M., Fazlyab M., Pourhajibagher M., Chiniforush N. Antimicrobial action of photodynamic therapy on Enterococcus faecalis biofilm using curing light, curcumin and riboflavin. Aust. Endod. J., 2021, 48(2), P. 274–282.
37. Mazlan N.A., Azman S., Ghazali N.F., Yusri P.Z.S., Idi H.M., Ismail M., Sekar M. Synergistic antibacterial activity of mangiferin with antibiotics against Staphylococcus aureus. Drug Invention Today, 2019, 12(1), P. 14–17.
38. Hettiarachchi S.S., Perera Y., Dunuweera S.P., Dunuweera A.N., Rajapakse S., Rajapakse M.G. Comparison of Antibacterial Activity of Nanocurcumin with Bulk Curcumin. ACS Omega, 2022, 7 (50), P. 46494–46500.
39. Sarker A., Amin N., Shimu I.J., Akhter Md.P., Alam Md.A., Rahman Md.M., Sultana H. Antimicrobial activity of methanolic extract of langra mango pulp. J. Pharmacogn. Phytochem., 2017, 6(6), P. 28–30.
40. Sharahi J.Y., Ahovan Z.A., Maleki D.T., Rad Z.R., Rad Z.R., Goudarzi M., Shariati A., Bostanghadiri N., Abbasi E., Hashemi A. In vitro antibacterial activity of curcumin-meropenem combination against extensively drug-resistant (XDR) bacteria isolated from burn wound infections. Avicenna J. Phytomed., 2020, 10(1), P. 3–10.
41. Vasudevan A., Kesavan D.K., Wu L., Su Z., Wang S., Ramasamy M.K., Hopper W., Xu H. In Silico and In Vitro Screening of Natural Compounds as Broad-Spectrum β-Lactamase Inhibitors against Acinetobacter baumannii New Delhi Metallo-β-lactamase-1 (NDM-1). BioMed Res. Int., 2022, 2022, P. 1–19.
42. Kaur A., Sharma P., Capalash N. Curcumin alleviates persistence of Acinetobacter baumannii against colistin. Sci. Rep., 2018, 8, P. 11029.
43. Nguyen H.T., Miyamoto A., Hoang H.T., Vu T.T.T., Pothinuch P., Nguyen H.T.T. Effects of Maturation on Antibacterial Properties of Vietnamese Mango (Mangifera indica) Leaves. Molecules, 2024, 29(7), P. 1443.
44. Gunes H., Gulen D., Mutlu R., Gumus A., Tas T., Topkaya A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health, 2013, 32(2), P. 246–250.
45. Thambi P.A., John S., Lydia E., Iyer P., Monica S.J. Antimicrobial efficacy of mango peel powder and formulation of recipes using mango peel powder (Mangifera indica L.). Int. J. Home Sci., 2016, 2(2), P. 155–161.
46. Kim M.K., Park J.C., Chong Y. Aromatic Hydroxyl Group Plays a Critical Role in Antibacterial Activity of the Curcumin Analogues. Nat. Prod. Commun., 2012, 7(1), P. 57–58.
47. Zampini I.C., Arias M.E., Cudmani N., Ordonez R.M., Isla M.I., Moreno S. Antibacterial potential of non-volatile constituents of Rosmarinus officinalis against 37 clinical isolates of multidrug-resistant bacteria. Bol. Latinoam. Caribe Plantas Med. Arom´at., 2013, 12(2), P. 201–208.
48. Moreno S., Scheyer T., Romano C.S., Vojnov A.A. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res., 2006, 40(2), P. 223–231.
49. Tawfeeq A.A., Mahdi M.F., Abaas I.S., Alwan A.H. Phytochemical and antibacterial studies of leaves of Rosmarinus officinalis cultivated in Karbala, Iraq. Al Mustansiriyah J. Pharm. Sci., 2017, 17(2), P. 9.
50. Amaral G.P., Mizdal C.R., Stefanello S.T., Mendez A.S.L., Puntel R.L., de Campos M.M.A., Soares F.A.A., Fachinetto R. Antibacterial and antioxidant effects of Rosmarinus officinalis L. extract and its fractions. J. Tradit. Complement. Med., 2019, 9(4), P. 383–392.
51. Yazdi F.T., Behbahani B.A., Mortazavi A. Investigating the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the Lavandula stoechas L. and Rosmarinus officinalis L. extracts on pathogen bacterias “in vitro”. J. Paramed. Sci., 2014, 5(2), P. 91–101.
52. Biharee A., Sharma A., Kumar A., Jaitak V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia, 2020, 146, P. 104720.
53. Parmanik A., Das S., Kar B., Bose A., Dwivedi G.R., Pandey M.P. Current Treatment Strategies Against Multidrug-Resistant Bacteria: A Review. Curr. Microbiol., 2022, 79(12), P. 388.
54. Wei, Q.-Y., Xu, Y.-M., Lau, A.T.Y. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers, 2020, 12, P. 2783.
55. Peng, S., Yuan, X., Li, H., Wei, Y., Zhou, B., Ding, G., & Bai, J. Recent progress in nanocarrier-based drug delivery systems for antitumour metastasis. European journal of medicinal chemistry, 2023, 252, P. 115259.
56. Morozkina S.N., Nhung Vu T.H., Generalova Y.E., Snetkov P.P., Uspenskaya M.V. Mangiferin as New Potential Anti-Cancer Agent and Mangiferin-Integrated Polymer Systems-A Novel Research Direction. Biomolecules, 2021, 11(1), P. 79.
57. Bansal S.S., Goel M., Aqil F., Vadhanam M.V., Gupta R.C. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev. Res. (Phila), 2011, 4(8), P. 1158–1171.
58. Wu X., Yang Y. Research progress on drug delivery systems for curcumin in the treatment of gastrointestinal tumors. World Journal of Gastrointestinal Oncology, 2023, 15(8), P. 1342–1348.
59. Rahimi H.R., Nedaeinia R., Sepehri Shamloo A., Nikdoust S., Kazemi Oskuee R. Novel delivery system for natural products: Nano-curcumin formulations. Avicenna J. Phytomed., 2016, 6(4), P. 383–398.
60. Kapustin M.A., Chubarova V.G., Tsyhankov V.P., Kurchenko V.P. Isolation of curcuminoids from the rhizome of curcuma longa L and the study of the composition of the resulting drug using chromatographic analysis methods. Belarussian State University, seria Chemistry of natural and synthetic biologically active compounds, 2016, 11(2), P. 248–262.
61. Aggarwal B.B., Sundaram C., Malani N., Ichikawa H. Curcumin: the indian solid gold in health and disease. Advances in experimental medicine and biology, 2007, 595, P. 1–75.
62. Wiggers H.J., et. Al. Curcumin, a multitarget phytochemical: challenges and perspectives. Studies in Natural Products Chemistry, 2017, 53, P. 243–276.
63. Priyadarsini K.I. The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 2014, 19(2), P. 20091–20112.
64. Esatbeyoglu T. Curcumin – from molecule to biological function. Angewandte Chemie (International Edition in English), 2012, 51(22), P. 5308– 5332.
65. Noorafshan A., Soheil A.E. A Review of Therapeutic Effects of Curcumin. Current Pharmaceutical Design, 2013, 19, P. 2032–2046.
66. Chaitanya M.V.N.L., Ramanunny A.K., Babu M.R., Gulati M., Vishwas S., Singh T.G., Chellappan D.K., Adams J., Dua K., Singh S.K. Journey of Rosmarinic Acid as Biomedicine to Nano-Biomedicine for Treating Cancer: Current Strategies and Future Perspectives. Pharmaceutics, 2022, 14(11), P. 2401.
67. Xue X., Ricci M., Qu H., Lindstrom A., Zhang D., Wu H., Lin T.-Y., Li Y. Iron-crosslinked rososome with robust stability and high drug loading for synergistic cancer therapy. J. Control. Release, 2020, 329, P. 794–804.
68. Subongkot T., Ngawhirunpat T., Opanasopit P. Development of Ultradeformable Liposomes with Fatty Acids for Enhanced Dermal Rosmarinic Acid Delivery. Pharmaceutics, 2021, 13(3), P. 404.
69. Fuster M.G., Carissimi G., Montalb´an M.G., V´ıllora G. Antitumor activity of rosmarinic acid-loaded silk fibroin nanoparticles on HeLa and MCF-7 cells. Polymers, 2021, 13(18), P. 3169.
70. Tabatabaeian K., Simayee M., Fallah S.A., Mashayekhi F. N-Doped Carbon Nanodots@UiO-66-NH(2) as Novel Nanoparticles for Releasing of the Bioactive Drug, Rosmarinic Acid and Fluorescence Imaging. DARU J. Pharm. Sci., 2019, 27(1), P. 307–315.
71. Chung C.H., Jung W., Keum H., Kim T.W., Jon S. Nanoparticles derived from the natural antioxidant rosmarinic acid ameliorate acute inflammatory bowel disease. ACS Nano, 2020, 14(6), P. 6887–6896.
72. Campos D.A., Madureira A.R., Gomes A.M., Sarmento B., Pintado M.M. Optimization of the production of solid witepsol nanoparticles loaded with rosmarinic acid. Colloids Surf. B Biointerfaces, 2013, 115, P. 109–117.
73. Bhatt S., Vyas G., Paul P. Rosmarinic acid-capped silver nanoparticles for colorimetric detection of cn- and redox-modulated surface reaction-aided detection of Cr(VI) in water. ACS Omega, 2022, 7(1), P. 1318–1328.
74. Lian S., Lamprou D., Zhao M. Electrospinning technologies for the delivery of Biopharmaceuticals: Current status and future trends. Int. J. Pharm., 2024, 651, P. 123641.
75. Vatankhah E. Rosmarinic acid-loaded electrospun nanofibers: In vitro release kinetic study and bioactivity assessment. Eng. Life Sci., 2018, 18(10), P. 732–742.
76. Vaka S.R., Shivakumar H.N., Repka M.A., Murthy S.N. Formulation and evaluation of carnosic acid nanoparticulate system for upregulation of neurotrophins in the brain upon intranasal administration. J. Drug Target., 2012, 21(1), P. 44–53.
77. Zheng H., Li J., Ning F., Wijaya W., Chen Y., Xiao J., Cao Y., Huang Q. Improving in vitro bioaccessibility and bioactivity of carnosic acid using a lecithin-based nanoemulsion system. Food & Funct., 2020, 12 (4), P. 1558–1568.
78. Khella K.F., Abd El Maksoud A.I., Hassan A., Abdel-Ghany S.E., Elsanhoty R.M., Aladhadh M.A., Abdel-Hakeem M.A. Carnosic Acid Encapsulated in Albumin Nanoparticles Induces Apoptosis in Breast and Colorectal Cancer Cells. Molecules, 2022, 27(13), P. 4102.
Рецензия
Для цитирования:
Климшина В.И., Шайкенов Р.О., Морозкина С.Н., Романов А.Е., Снетков П.П. Природные полифенолы как потенциальные антибактериальные агенты и их системы доставки наноразмерного уровня. Наносистемы: физика, химия, математика. 2024;15(6):936-949. https://doi.org/10.17586/2220-8054-2024-15-6-936-949
For citation:
Klimshina V.I., Shaikenov R.O., Morozkina S.N., Romanov A.E., Snetkov P.P. Natural polyphenols as potential antibacterial agents and their delivery systems of nanosized level. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(6):936-949. https://doi.org/10.17586/2220-8054-2024-15-6-936-949