Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation

https://doi.org/10.17586/2220-8054-2022-13-1-5-11

Abstract

We consider a general second order elliptic operator in a planar waveguide perforated by small holes distributed along a curve and subject to classical boundary conditions on the holes. Under weak assumptions on the perforation, we describe all possible homogenized problems.

About the Authors

G. Cardone
Universita di Napoli “Federico II”
Russian Federation


T. Durante
University of Salerno
Russian Federation


References

1. Borisov D., Cardone G., Durante T. Homogenization and uniform resolvent convergence for elliptic operators in a strip perforated along a curve. Proc. R. Soc.Edingurgh Sect. A, 2016, 146(6), P. 115-1158.

2. Belyaev A.G. Averaging of a mixed boundary value problem for the Poisson equation in a domain perforated along the boundary.Russ. Math. Surv., 1990, 45, P. 140.

3. Chechkin G.A., Chechkina T.A., D’Apice C., De Maio U. Homogenization in domains randomly perforated along the boundary. Discr. Cont. Dynam. Syst., Ser. B., 2009, 12, P. 713-730.

4. Chechkin G.A., Koroleva Yu.O., Meidell A., Persson L.-E. On the Friedrichs Inequality in a Domain Perforated Aperiodically along the Boundary. Homogenization Procedure. Asymptotics for Parabolic Problems.Russ. J. Math. Phys., 2009, 16, P. 1-16.

5. Go´mez D., Lobo M., Pe´rez M.E., Shaposhnikova T.A. Averaging of variational inequalities for the Laplacian with nonlinear restrictions along manifolds. Appl. Anal., 2013, 92, P. 218-237.

6. Go´mez D., Pe´rez M.E., Shaposhnikova T.A. On homogenization of nonlinear Robin type boundary conditions for cavities along manifolds and associated spectral problems. Asymptot. Anal., 2012, 80, P. 289-322.

7. Lobo M., Oleinik O.A., Pe´rez M.E., Shaposhnikova T.A. On homogenizations of solutions of boundary value problems in domains, perforated along manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci., 1997, 25(4), P. 611-629.

8. Lobo M., Oleinik O.A., Pe´rez M.E., Shaposhnikova T.A. On boundary-value problems in domains perforated along manifolds.Russ. Math. Surv., 1997, 52, P. 838-839.

9. Birman M.Sh. On the averaging procedure for periodic operators in a neighborhood of an edge of an internal gap. St. Petersburg Math. J., 2004, 15, P. 507-513.

10. Birman M.Sh., Suslina T.A. Homogenization with corrector term for periodic elliptic differential operators. St. Petersburg Math. J., 2006, 17, P. 897-973.

11. Birman M.Sh., Suslina T.A. Homogenization with corrector for periodic differential operators. Approximation of solutions in the Sobolev class H1(Rd). St. Petersburg Math. J., 2007, 18, P. 857-955.

12. Suslina T.A. Homogenization with corrector for a stationary periodic Maxwell system. St. Petersburg Math. J., 2008, 19, P. 455-494.

13. Suslina T.A. Homogenization in Sobolev class H1(Rd) for periodic elliptic second order differential operators including first order terms. St. Petersburg Math. J., 2011, 22, P. 81-162.

14. Suslina T.A., Kharin A.A. Homogenization with corrector for a periodic elliptic operator near an edge of inner gap. J. Math. Sci., 2009, 159, P. 264-280.

15. Cardone G., Pastukhova S.E., Zhikov V.V. Some estimates for nonlinear homogenization. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 2005, 29, P. 101-110.

16. Pastukhova S.E. Some Estimates from Homogenized Elasticity Problems. Dokl. Math., 2006, 73, P. 102-106.

17. Pastukhova S.E., Tikhomirov R.N. Operator Estimates in Reiterated and Locally Periodic Homogenization. Dokl. Math., 2007, 76, P. 548-553.

18. Zhikov V.V. On operator estimates in homogenization theory. Dokl. Math., 2005, 72, P. 534-538.

19. Zhikov V.V. Spectral method in homogenization theory. Proc. Steklov Inst. Math., 2005, 250, P. 85-94.

20. Zhikov V.V. Some estimates from homogenization theory. Dokl. Math., 2006, 73, P. 96-99.

21. Griso G. Error estimate and unfolding for periodic homogenization. Asymptot. Anal., 2004, 40, P. 269-286.

22. Griso G.Interior error estimate for periodic homogenization. C. R. Acad. Sci. Paris Ser. I Math., 2005, 340, P. 251-254.

23. Kenig C.E., Lin F., Shen Z. Convergence rates in L2 for elliptic homogenization problems. Arch. Rat. Mech. Anal., 2012, 203, P. 1009-1036.

24. Kenig C.E., Lin F., Shen Z. Periodic homogenization of green and neumann functions.Comm. Pure Appl. Math., 2014, 67, P. 1219-1262.

25. Borisov D., Bunoiu R., Cardone G. Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows. J. Math. Sci., 2011, 176, P. 774-785.

26. Borisov D., Bunoiu R., Cardone G. On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition. Ann. Henri Poincare´, 2010, 11, P. 1591-1627.

27. Borisov D., Bunoiu R., Cardone G. On a waveguide with an infinite number of small windows.Compt. Rend. Math., 2011, 349, P. 53-56.

28. Borisov D., Bunoiu R., Cardone G. Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics. Z. Angew. Math. Phys., 2013, 64, P. 439-472.

29. Borisov D., Cardone G. Homogenization of the planar waveguide with frequently alternating boundary conditions. J. Phys. A., 2009, 42, id 365205.

30. Borisov, D., Cardone, G.: Complete asymptotic expansions for the eigenvalues of the Dirichlet Laplacian in thin three-dimensional rods, ESAIM: COCV 17 (2011), 887-908.

31. Borisov D., Cardone G. Planar waveguide with ”twisted” boundary conditions. Small width, J. Math. Phys., 2012, 53, 023503.

32. Borisov D., Cardone G. Spectra of operator pencils with small PT-symmetric periodic perturbation. ESAIM: COCV, 2020, 26, 2019070.

33. Borisov D., Cardone G., Checkhin G., Koroleva Yu. On elliptic operators with Steklov condition perturbed by Dirichlet condition on a small part of boundary. Calc. Var. Part. Diff. Eq., 2021, 60, P. 48.

34. Cardone G., Khrabustovskyi A. Neumann spectral problem in a domain with very corrugated boundary, J. Diff. Eq., 2015, 259(6), P. 2333-2367.

35. Cardone G., Khrabustovskyi A. δl-interaction as a limit of a thin Neumann waveguide with transversal window. J. Math. Anal. Appl., 2019, 473(2), P. 1320-1342.

36. Cardone G., Khrabustovskyi A. Spectrum of the Laplacian on a domain perturbed by small resonators, arXiv: 1808.05402.

37. Cardone G., Minutolo V., Nazarov S.A. Gaps in the essential spectrum of periodic elastic waveguides. Z. Angew. Math. Mech., 2009, 89(9), P. 729-741.

38. Cardone G., Nazarov S.A., Sokolowski. Asymptotics of solutions of the Neumann problem in a domain with closely posed components of the boundary. Asympt. Anal., 2009, 62, P. 41-88.

39. Cardone G., Nazarov S.A., Taskinen J. Spectra of open waveguides in periodic media. J. Functional Anal., 2015, 269(8), P. 2328-2364.

40. Aiyappan S., Cardone G., Perugia C., Prakash R. Homogenization of a nonlinear monotone problem in a locally periodic domain via unfolding method. Nonlinear Analysis: Real World Applications, 2022, 66, 103537.

41. Borisov D., Cardone G., Faella L., Perugia C. Uniform resolvent convergence for a strip with fast oscillating boundary. J. Diff. Equ., 2013, 255, P. 4378-4402.

42. Nazarov S.A. Dirichlet problem in an angular domain with rapidly oscillating boundary: Modeling of the problem and asymptotics of the solution. St. Petersburg Math. J., 2008, 19, P. 297-326.

43. Olejnik O.A., Shamaev A.S., Yosifyan G.A. Mathematical Problems in Elasticity and Homogenization. Stud. Math. Appl., 1992, 26. North-Holland, Amsterdam.

44. Marchenko V.A., Khruslov E.Ya. Boundary Value Problems in Domains with Fine-Grained Boundary. Naukova Dumka, Kiev, 1974. (in Russian)

45. Cardone G., Panasenko G.P., Sirakov Y. Asymptotic analysis and numerical modeling of mass transport in tubular structures. Math. Models Meth. Appl. Sc., 2010, 20(4), P. 1-25.

46. Borisov D. Asymptotics for the solutions of elliptic systems with fast oscillating coefficients. St. Petersburg Math. J., 2009, 20, P. 175-191.

47. Mikhajlov V.P. Partial Differential Equations. Mir Publishers, Moscow, 1978.

48. Borisov D., Krejcˇiˇrık D. PT -symmetric waveguide.Integr. Equat. Oper. Th., 2008, 62, P. 489-515.

49. Chechkin G.A. Averaging of boundary value problems with singular perturbation of the boundary conditions.Russ. Acad. Sci. Sb. Math., 1994, 79, P. 191-220.

50. Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H. Solvable models in quantum mechanics, 2nd ed. AMS Chelsea Publishing, Providence, Rhode Island, 2005.


Review

For citations:


Cardone G., Durante T. Asymptotic analysis of a planar waveguide perturbed by a non periodic perforation. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(1):5-11. https://doi.org/10.17586/2220-8054-2022-13-1-5-11

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)