Comments on the Chernoff estimate
https://doi.org/10.17586/2220-8054-2022-13-1-17-23
Abstract
The Chernoff √n-Lemma is revised. This concerns two aspects: a re-examination of the Chernoff estimate in the strong operator topology and the operator-norm estimate for quasi-sectorial contractions. Applications to the Lie-Trotter product formula approximation C 0-semigroups are also discussed.
References
1. Mo¨bus T., Rouze´ C. Optimal convergence rate in the quantum Zeno effect for open quantum systems in infinite dimensions. arXiv:2111.13911v2 [quant-ph], 2021, 1-27.
2. Zagrebnov V.A.Comments on the Chernoff √n-lemma. In: Functional Analysis and Operator Theory for Quantum Physics (The Pavel Exner Anniversary Volume), European Mathematical Society, Zu¨rich, 2017, P. 565-573.
3. Chernoff P.R. Product formulas, nonlinear semigroups and addition of unbounded operators. Mem. Amer. Math. Soc., 1974, 140, P. 1-121.
4. Engel K.-J., Nagel R. One-parameter Semigroups for Linear Evolution Equations. Springer-Verlag, Berlin, 2000.
5. Davies E.B. One-parameter Semigroups. Academic Press, London, 1980.
6. Kato T. Perturbation Theory for Linear Operators. (Corrected Printing of the Second Edition). Springer-Verlag, Berlin Heidelberg, 1995.
7. Cachia V., Zagrebnov V.A. Operator-Norm Approximation of Semigroups by Quasi-sectorial Contractions. J. Fuct. Anal., 2001, 180, P. 176-194.
8. Zagrebnov V.A. Quasi-sectorial contractions. J. Funct. Anal., 2008, 254, P. 2503-2511.
9. Ritt R.K. A condition that lim n→∞ T n = 0. Proc. Amer. Math. Soc., 1953, 4, P. 898-899.
10. Arlinski˘iYu., Zagrebnov V. Numerical range and quasi-sectorial contractions. J. Math. Anal. Appl., 2010, 366, P.33-43.
11. Paulauskas V. On operator-norm approximation of some semigroups by quasi-sectorial operators. J. Funct. Anal., 2004, 207, P. 58-67.
Review
For citations:
Zagrebnov V.A. Comments on the Chernoff estimate. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(1):17-23. https://doi.org/10.17586/2220-8054-2022-13-1-17-23