Networks with point-like nonlinearities
https://doi.org/10.17586/2220-8054-2022-13-1-30-35
Abstract
We study static nonlinear waves in networks described by a nonlinear Schro¨ dinger equation with point-like nonlinearities on metric graphs. Explicit solutions fulfilling vertex boundary conditions are obtained. Spontaneous symmetry breaking caused by bifurcations is found.
About the Authors
K. K. SabirovRussian Federation
J. R. Yusupov
Russian Federation
Kh. Sh. Matyokubov
Russian Federation
H. Susanto
Russian Federation
D. U. Matrasulov
Russian Federation
References
1. Kottos T., Smilansky U. Periodic Orbit Theory and Spectral Statistics for Quantum Graphs. Ann.Phys., 1999, 274(1), P. 76-124.
2. Exner P., Kovarik H. Quantum waveguides. Springer, 2015.
3. Susanto H., van Gils S. Semifluxons with a hump in a 0-π Josephson junction. Physica C, 2004, 408, P. 579.
4. Susanto H., van Gils S., Doelman A., Derks G. Analysis on the stability of Josephson vortices at tricrystal boundaries: A 3φ0/2-flux case. Phys. Rev. B, 2004, 69, 212503.
5. Sobirov Z., Matrasulov D., Sabirov K., Sawada S., Nakamura K.Integrable nonlinear Schro¨dinger equation on simple networks: Connection formula at vertices. Phys. Rev. E, 2010, 81, 066602.
6. Sobirov Z., Matrasulov D., Sawada S., Nakamura K. Transport in simple networks described by an integrable discrete nonlinear Schro¨dinger equation. Phys.Rev.E, 2011, 84, 026609.
7. Adami R., Cacciapuoti C., Finco D., Noja D. Fast Solitons on Star Graphs. Rev. Math. Phys., 2011, 23, 409.
8. Adami R., Cacciapuoti C., Finco D., Noja D. Stationary states of NLS on star graphs. Europhys. Lett., 2012, 100, 10003.
9. Sabirov K.K., Sobirov Z.A., Babajanov D., Matrasulov D.U. Stationary nonlinear Schro¨dinger equation on simplest graphs. Phys.Lett. A, 2013, 377, P. 860.
10. Noja D. Nonlinear Schro¨dinger equation on graphs: recent results and open problems. Philos. Trans. R. Soc. A, 2014, 372, 20130002.
11. Adami R., Cacciapuoti C., Noja D. Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy. J. Diff. Eq., 2016, 260, 7397.
12. Caputo J.-G., Dutykh D. Nonlinear waves in networks: Model reduction for the sine-Gordon equation. Phys. Rev. E, 2014, 90, 022912.
13. Uecker H., Grieser D., Sobirov Z., Babajanov D., Matrasulov D. Soliton transport in tubular networks: Transmission at vertices in the shrinking limit. Phys. Rev. E, 2015, 91, 023209.
14. Noja D., Pelinovsky D., Shaikhova G. Bifurcations and stability of standing waves in the nonlinear Schro¨dinger equation on the tadpole graph. Nonlinearity, 2015, 28, 2343.
15. Sobirov Z., Babajanov D., Matrasulov D., Nakamura K., Uecker H. Sine-Gordon solitons in networks: Scattering and transmission at vertices. EPL, 2016, 115, 50002.
16. Kairzhan A., Pelinovsky D.E. Spectral stability of shifted states on star graphs. J. Phys. A: Math. Theor., 2018, 51, 095203.
17. Sabirov K.K., Rakhmanov S., Matrasulov D., Susanto H. The stationary sine-Gordon equation on metric graphs: Exact analytical solutions for simple topologies. Phys. Lett. A, 2018, 382, 1092.
18. Sabirov K.K., Babajanov D.B., Matrasulov D.U., Kevrekidis P.G. Dynamics of Dirac solitons in networks. J. Phys. A: Math. Gen., 2018, 51, 435203.
19. Sabirov K.K., Akromov M., Otajonov Sh.R., Matrasulov D.U. Soliton generation in optical fiber networks. Chaos, Solitons & Fractals, 2020, 133, 109636.
20. Yusupov J.R., Sabirov K.K., Ehrhardt M., Matrasulov D.U. Transparent quantum graphs. Phys. Let. A, 2019, 383, P. 2382-2388.
21. Aripov M.M., Sabirov K.K., Yusupov J.R. Transparent vertex boundary conditions for quantum graphs: Simplified approach. Nanosystems: Phys., Chem., Math., 2019, 10(5), P. 505-510.
22. Yusupov J.R., Sabirov K.K., Ehrhardt M., Matrasulov D.U. Transparent nonlinear networks. Phys. Rev. E, 2019, 100, 032204.
23. Yusupov J.R., Sabirov K.K., Asadov Q.U., Ehrhardt M., Matrasulov D.U. Dirac particles in transparent quantum graphs: Tunable transport of relativistic quasiparticles in branched structures. Phys. Rev. E, 2020, 101(6), 062208.
24. Yusupov J.R., Matyokubov Kh.Sh., Sabirov K.K. Particle transport in a network of quantum harmonic oscillators. NANOSYSTEMS: Phys., Chem., Math., 2020, 11(2), P. 145-152.
25. Sabirov K.K., Yusupov J.R., Matyokubov Kh.Sh. Dynamics of polarons in branched conducting polymers. Nanosystems: Phys., Chem., Math., 2020, 11(2), P. 183-188.
26. Sabirov K.K., Yusupov J., Jumanazarov D., Matrasulov D. Bogoliubov de Gennes equation on metric graphs. Phys. Lett. A, 2018, 382, 2856.
27. Babajanov D., Matyoqubov H., Matrasulov D. Charged solitons in branched conducting polymers. J. Chem. Phys., 2018, 149, 164908.
28. Yusupov J.R., Matyokubov Kh.Sh., Sabirov K.K., Matrasulov D.U. Exciton dynamics in branched conducting polymers: Quantum graphs based approach. Chem. Phys., 2020, 537, 110861.
29. Noja D., Rolando S., Secchi S. Standing waves for the NLS on the double-bridge graph and a rational-irrational dichotomy. J. Diff. Eqn., 2019, 266, P. 147.
30. Kostrykin V., Schrader R. Kirchhoff’s rule for quantum wires. J. Phys. A: Math. Gen., 1999, 32, P. 595.
31. Mayteevarunyoo T., Malomed B.A., Dong G. Spontaneous symmetry breaking in a nonlinear double-well structure. Phys. Rev. A, 2008, 78, 053601.
32. Brazhnyi V.A., Malomed B.A. Spontaneous symmetry breaking in Schro¨dinger lattices with two nonlinear sites. Phys. Rev. A, 2011, 83, 053844.
33. Mak W.C.K., Malomed B.A., Chu P.L. Solitary waves in coupled nonlinear waveguides with Bragg gratings. J. Opt. Soc. Am. B, 1998, 15, 1685.
34. Gubeskys A., Malomed B.A. Symmetric and asymmetric solitons in linearly coupled Bose-Einstein condensates trapped in optical lattices. Phys. Rev. A, 2007, 75, 063602.
35. Matuszewski M., Malomed B.A., Trippenbach M. Spontaneous symmetry breaking of solitons trapped in a double-channel potential. Phys. Rev. A, 2007, 75, 063621.
Review
For citations:
Sabirov K.K., Yusupov J.R., Matyokubov Kh.Sh., Susanto H., Matrasulov D.U. Networks with point-like nonlinearities. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(1):30-35. https://doi.org/10.17586/2220-8054-2022-13-1-30-35