Pump photons present in a non-linear process as a witnesses of nonclassicality of a system
https://doi.org/10.17586/2220-8054-2022-13-1-71-77
Аннотация
We have studied non-classical effects, i.e. higher order photon antibunching (HOA) and higher order sub-Poissonian photon number statistics (HOSPS) in various non-linear optical processes like second harmonic generation, fourth harmonic generation, coherent anti-Stokes Raman scattering (CARS) and coherent anti-Stokes hyper-Raman scattering (CAHRS) using short time interaction techniques. The non-classical effects directly depend on number of photons prior to interaction with non-linear medium has already been studied but we have found that non-linear processes involving equal number of pump photons have same higher order photo antibunching (HOA) and higher order sub-Poissonian photon number statistics (HOSPS) independent of the non-linear process involved.
Список литературы
1. Glauber R.J. Coherent and incoherent states of the radiation field. Physical Review, 1963, 131(6), P. 2766-2788.
2. Sudarshan E.C.G. Equivalence of semi-classical and quantum mechanical descriptions of statistical light beams. Physical Review Letters, 1963, 10(7), P. 277-279.
3. Alexanian M. Non-classicality criteria: Glauber-Sudarshan P function and Mandel parameter. Journal of Modern Optics, 2017, 65(1), P. 16-22.
4. Miranowicz A., Bartkowiak M., Wang X., Liu Y.X., Nori F. Testing non classicality in multimode fields: A unified derivation of classical inequalities. Physical Review A, 2010, 82(1), 013824(1-14).
5. Alam N., Verma A., Pathak A. Higher-order non-classicalities of finite dimensional coherent states: A comparative study. Physics Letters A, 2018, 382(28), P. 1842-1851.
6. Pathak A., Garcia M.E. Control of higher order antibunching. Applied Physics B, 2006, 84(3), P. 479-484.
7. Verma A. Study of higher order squeezing and sub-Poissonian photon statistics in generalized binomial state of light, International Conference on Photonics. Meta materials & Plasmonics AIP Conference Proceeding, 2019, 2136, 050009(14).
8. Verma A., Pathak A. Generalized structure of higher order non-classicality. Physics Letters A, 2010, 374(8), P. 1009-1020.
9. Priyanka, Gill S. Higher Order Squeezing in Pump Mode in Multi-wave Mixing Process, In book: Advances in Communication and Computational Technology. Select Proceedings of ICACCT, 2019, P. 149-162.
10. Gill S. Non Classical Effect of Light in Stimulated Five Wave Mixing.International Journal of Research and Scientific Innovation, 2017, 4(6), P. 90-93.
11. Priyanka, Gill S. Study of Nonclassicality in Fifth Harmonic Generation Nonlinear Optical Process. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12(1), P. 65-72.
12. Mendoza K.Z., Dey S., Hussin V. Generalized squeezed states. Physics Letters A, 2018, 382(47), P. 3369-3375.
13. Avenhaus M., Laiho K., Chekhova M.V., Silberhorn C. Accessing higher order correlations in quantum optical states by time multiplexing. Physical Review Letters, 2010, 104(6), 063602(1-4).
14. Allevi A., Olivares S., Bondani M. High-order photon-number correlations: a resource for characterization and applications of quantum states.International Journal of Quantum Information, 2012, 10(08), 1241003(1-8).
15. Allevi A., Olivares S., Bondani M. Measuring high-order photon-number correlations in experiments with multimode pulsed quantum states. Physical Review A, 2012, 85(6), 063835(1-5).
16. Peˇrina J., Micha´lek V. Haderka O. Higher-order sub-poissonian-like non classical fields: Theoretical and experimental comparison. Physical Review A, 2017, 96(3), 033852(1-7).
17. Alam N., Thapliyal K., Pathak A., Sen B., Verma A., Mandal S. Lower-and higher-order non-classicality in a Bose-condensed opto mechanical-like system and a Fabry-Perot cavity with one movable mirror: squeezing, antibunching and entanglement. arXiv preprintarXiv, 2017, 1708.03967.
18. Thapliyal K., Pathak A., Sen B., Peˇrina J. Higher-order non-classicalities in a codirectional nonlinear optical coupler: quantum entanglement, squeezing, and antibunching. Physical Review A, 2014, 90(1), 013808(1-10).
19. Thapliyal K., Pathak A., Sen B., Perina J. Nonclassicality in non-degenerate hyper-Raman processes. arXiv preprint arXiv, 2017, 1710.04456.
20. Thapliyal K., Samantray N.L., Banerji J., Pathak A.Comparison of lower order and higher order non-classicality in photon added and photon subtracted squeezed coherent states. Physics Letters A, 2017, 381(37), P. 3178-3187.
21. Mollow B.R., Glauber R.J. Quantum Theory of Parametric Amplification. Physical Review, 1967, 160(5), P. 1076-1096.
22. Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V. Entanglement Assisted Classical Capacity of Noisy Quantum Channels. Physical Review Letters, 1999, 83(15), P. 3081-3084.
23. Laurenza R., Lupo C., Lloyd S., Pirandola S. Dense coding capacity of a quantum channel. Physical Review Research, 2020, 2(2), 023023(1-5).
24. Braunstein S.L., D’Ariano G.M., Milburn G.J., Sacchi M.F. Universal Teleportation with a Twist. Physical Review Letters, 2000, 84(15), P. 3486-3489.
25. Bennett C.H., Brassard G., Mermin N.D. Quantum cryptography without Bell’s theorem. Physical Review Letters, 1992, 68(5), P. 557-559.
26. Kim M.S. et. al. Entanglement by a beam splitter: Non-classicality as a prerequisite for entanglement. Physical Review A, 2002, 65(3), 032323(1-7).
27. Bachor H.A.A Guide to Experiments in Quantum Optics. Weinheim: Wiley VCH, 1998, Chapters 8 and 10.
28. Vyas R., Wang C., Singh S. Homodyne detection for the enhancement of antibunching. Physical Review A, 1996, 54(3), P. 2391-2396.
29. Erenso D., Vyas R., Singh S. Higher order sub-Poissonian photon statistics in terms of factorial moments. Journal of Optical Society B, 2002, 19(6), P. 1471-1475.
30. Basak S., Chandrasekar R. Passive optical wave guiding organic rectangular tubes: tube cutting, controlling light propagation distance and multiple optical outputs. Journal of Materials Chemistry C, 2013, 2(8), P. 1404-1408.
31. Hu S., Melton C., Mukherjee D. A facile route for the synthesis of nanostructured oxides and hydroxides of cobalt using laser ablation synthesis in solution (LASIS). Physical Chemistry Chemical Physics, 2014, 16(43), P. 24034-24044.
32. Udayabhaskar R., Ollakkan M.S., Karthikeyan B. Preparation, optical and non-linear optical power limiting properties of Cu, CuNi nanowires. Appled Physics Letters, 2014, 104(1), 013017(1-4).
33. Emelyanov A.V., Khenkin M.V., Kazanskii A.G., Forsh P.A., Kashkarov P.K., Gecevicius, Mindaugas, Beresna, Martynas, Kazansky, Peter G. Femtosecond laser induced crystallization of hydrogenated amorphous silicon for photovoltaic applications. Thin Solid Films, 2014, 556(4), P. 410-413.
34. Tang C., Zheng Q., Zhu H., Wang L., Chen S.C., Ma E., Chen X. Two-photon absorption and optical power limiting properties of ladder-type tetra phenylene cored chromophores with different terminal groups. Journal of Materials Chemistry C, 2013, 1(9), P. 1771-1780.
35. Jiang T., Qin G., Qin W., Zhou J. Passively Q-switched erbium-doped fiber laser based on gold nanorods. Optik, 2014, 125(19), P. 5789-5793.
36. Krishnan S., Sandeep C.S.S., Philip R., et al. Two-photon assisted excited state absorption in multiferroic YCrO3, nanoparticles. Chemical Physics Letters, 2012, 529(5), P. 59-63.
37. Ren P., Fan H., Wang X. Electrospun nanofibers of ZnO/BaTiO3, heterostructures with enhanced photocatalytic activity. Catalysis Communications, 2012, 25(8), P. 32-35.
38. Xie R.H. H andbook of advanced electronic and photonic materials and devices (H.S. Nalwa edition). Academic Press, New York, 2000, 9, P. 267-307.
39. Xie R.H., Rao Q., Jensen L. Encyclopedia of nanoscience and nanotechnology (H.S. Nalwwa edition). American Scientific, Los Angeles, 2003.
40. Stentz A.J., Boyd R. Handbook of Photonics (M.C. Gupta edition), CRC press, Boca Raton, 1997.
41. Hanamura E. Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well. Physical Review B, 1988, 38(2), P. 1228-1234.
42. Lee C.T. Higher order criteria for non-classical effects in photon statistics. Physical Review A. 1990, 41(3), P. 1721-1723.
43. An N.B. Multimode higher-order antibunching and squeezing in trio coherent states. Journal Optics B: Quantum and Semiclassical Optics, 2002, 4(3), P. 222-227.
44. Prakash H., Mishra D.K. Higher order sub-Poissonian photon statistics and their use in detection of Hong and Mandel squeezing and amplitude squared squeezing. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(9), P. 2291-2297.
Рецензия
Для цитирования:
, . Наносистемы: физика, химия, математика. 2022;13(1):71-77. https://doi.org/10.17586/2220-8054-2022-13-1-71-77
For citation:
Priyanka , Gill S. Pump photons present in a non-linear process as a witnesses of nonclassicality of a system. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(1):71-77. https://doi.org/10.17586/2220-8054-2022-13-1-71-77