Synthesis and characterization of zirconia nanorods as a photo catalyst for the degradation of methylene blue dye
https://doi.org/10.17586/2220-8054-2022-13-1-78-86
Аннотация
t-ZrO2 nano crystalline photocatalyst have been synthesized by a simple co-precipitation method. The crystal structure, morphology, size, and elemental composition of ZrO2 nanorods were determined using XRD, SEM, EDX analysis. The optical properties and photocatalysis were analyzed using UV-Vis spectroscopy. The investigation of XRD pattern indicates tetragonal (t-ZrO2) and monoclinic phases (m-ZrO2) for the annealing temperatures 500 and 900 ◦C respectively. SEM images depicts rod like morphology. UV-Vis spectra illustrates that the synthesized samples have wide band gap. t-ZrO2 photocatalyst degrades methylene blue dye with 80 % removal efficiency in 180 minutes.
Об авторах
R. JebaРоссия
S. Radhika
Россия
C. Padma
Россия
X. Davix
Россия
Список литературы
1. Mahy J.G., Lambert S.D., et al. Ambient temperature ZrO2-doped TiO2 crystalline photocatalysts: Highly efficient powders and films for water depollution. Materials Today Energy, 2019, 13, P. 312-322.
2. Sugi S., Usha Rajalakshmi P., Shanthi J. Photocatalytic Degradation efficiency of CuxZn1-xO Composite. Optik, 2017, 131, P. 406-413.
3. Scholz N. Setting Criteria on Endocrine Disruptors: Follow-Up to the General Court Judgment. Brief. From Eur. Parliam., 27 April 2016, P. 1-10.
4. Ratnayake S.P., Mantilaka M.M.M.G.P.G., et al. Carbon quantum dots-decorated nano-zirconia: A highly efficient photocatalyst. Applied Catalysis A: General, 2019, 570, P. 23-30.
5. Oturan M.A., Aaron J.J. Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology, 2014, 44 (23), P. 2577-2641.
6. Wang J., Gu H. Novel metal nanomaterials and their catalytic applications. Molecules, 2015, 20 (9), P. 17070-17092.
7. Kirsch B.L., Tolbert S.H. Stabilization of Isolated Hydrous Amorphous and Tetragonal Zirconia Nanoparticles through the Formation of a Passivating Alumina Shell. Adv. Funct. Mater., 2003, 13, P. 281-288.
8. Rashad M.M., Baioumy H.M. Effect of thermal treatment on the crystal structure and morphology of zirconia nanopowders produced by three different routes. J. Mater. Process. Technol., 2008, 195, P. 178-185.
9. Ward D.A., Ko E.I. Synthesis and structural transformation of zirconia aerogels. Chem. Mater., 1993, 5, P. 956-969.
10. Trice R.W., Su Y.J., Mawdsley J.R., Faber K.T. Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ. J. Mater. Sci., 2002, 37, P. 2359-2365.
11. Neppolian B., Wang Q., Yamashita H., Choi H. Synthesis and characterization of ZrO2-TiO2 binary oxide semiconductor nanoparticles: Application and interparticle electron transfer process. Appl. Catal. A: Gen., 2007, 333, P. 264-271.
12. Wu C., Zhao X., et al. Gas-phase photo-oxidations of organic compoundsover different forms of zirconia. J. Mol. Catal. A: Chem., 2005, 229, P. 233-239.
13. Rajababu C. Influence of calcination temperature on structural, optical, dielectric properties of nano zirconium oxide. Optik, 2016, 127 (11), P. 4889-4893.
14. Besky Job C., Shabu R., Paul Raj S. Growth, structural, optical, and photo conductivity studies of potassium tetra fluoro antimonite. Optik, 2016, 127 (8), P. 3783-3787.
15. Radhika S., Padma C.M., Ramalingom S., Chithambara Thanu T. Growth, optical, thermal, mechanical and dielectric studies of potassium sulphate crystals doped with urea. Archives of Physics Research, 2013, 4 (1), P. 49-59.
16. Sadeghzadeh-Attar A. Efficient photocatalytic degradation of methylene blue dye by SnO2 nanotubes synthesized at different calcination temperatures. Solar Energy Materials and Solar Cells, 2018, 183, P. 16-24.
17. Sheeba J.R., Radhika S., Padma C.M. Photo catalytic degradation of Methylene Blue Dye by Cu doped SnO2 Nano Crystals. Wutan Huatan Jisuan Jishu, 2020, 16 (9), P. 66-76.
18. Bilal A., Sachin K., Sumeet K., Animesh K. Ojha. Shape Induced (spherical, sheets and rods) Optical and Magnetic Properties of CdS Nanostructures with Enhanced Photocatalytic Activity for Photodegradation of Methylene Blue Dye under Ultra-violet Irradiation. J. of Alloys and Compounds, 2016, 679, P. 324-334.
19. Vijaya Sankar K., Ashok M. Significantly enhanced photo catalytic activities of PbBi2Nb2O9(Bulk)/TiO2(Nano) hetero structured composites for methylene blue dye degradation under visible light. Materials Chemistry and Physics, 2020, 244, 122659.
20. Venkata Reddy Ch., Bathula Babu, Neelakanta Reddy I, Jaesool Shim. Synthesis and Characterization of Pure tetragonal ZrO2 Nano Particles with enhanced Photocatalytic activity. Ceramics International, 2018, 44 (6), P. 6940-6948.
21. He Zheng, Kaiyu Liu, Huaqiang Cao, Xinrong Zhang. l-Lysine-Assisted Synthesis of ZrO2 Nanocrystals and Their Application in Photocatalysis. J. Phys. Chem. C, 2009, 113 (42), P. 18259-18263.
22. Długosz O., Szostak K., Banach M. Photocatalytic properties of zirconium oxide-zinc oxide nanoparticles synthesised using microwave irradiation. Applied Nanoscience, 2020, 10, P. 941-954.
23. Prasad K., Pinjari D.V., Pandit A.B., Mhaskea S.T. Synthesis of zirconium dioxide by ultrasound assisted precipitation: Effect of calcination temperature. Ultrasonics Sonochemistry, 2011, 18 (5), P. 1128-1137.
24. Horti N.C., Kamatagi M.D., et al. Structural and optical properties of zirconium oxide (ZrO2) nanoparticles: effect of calcination temperature. Nano Express, 2020, 1 (1), 010022.
25. Berlin J., Sujathalekshmy S., et al. Effect of Mn doping on the structural and optical properties of ZrO2 thin films prepared by sol-gel method. Thin Solid Films, 2014, 550, P. 199-205.
26. Shirsath S.E., Kadam R.H., et al. Effect of sintering temperature and the particle size on the structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4. J. of Magnetism and Magnetic Materials, 2011, 323 (23), P. 3104-3108.
27. Baytar O., Sahin O., Kilicvuran H., Horoz S. Synthesis, structural, optical and photocatalytic properties of Fe-alloyed CdZnS nanoparticles. J. of Materials Science: Materials in Electronics, 2017, 29 (6), P. 4564-4568.
28. Sayama K., Arakawa H. Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon Dioxide over ZrO2 Catalyst. The J. of Physical Chemistry, 1993, 97 (3), P. 531-533.
29. Vasiljevic Z., Dojcinovic M.P., et al. Photocatalytic degradation of methylene blue under natural sunlight using iron titanate nanoparticles prepared by a modified sol-gel method. R. Soc. Open Sci., 2020, 7 (9), 200708.
30. Langford J.I., Wilson A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst., 1978, 11, P. 102-113.
31. Bugrov A.N., Smyslov R.Yu., et al. Phosphors with different morphology, formed under hydrothermal conditions on the basis of ZrO2:Eu3+ nanocrystallites. Nanosystems: Phys., Chem., Math., 2019, 10 (6), P. 654-665.
32. Kolesnik I.V., Lebedev V.A., Garshev A.V. Optical properties and photocatalytic activity of nanocrystalline TiO2 doped by 3d-metal ions. Nanosystems: Phys., Chem., Math., 2018, 9 (3), P. 401-409.
33. Lele S., Anantharaman T.R. Influence of crystallite shape on particle size broadening of Debye-Scherrer reflections. Proc. Indian Acad. Sci., 1966, 64, P. 261-274.
Рецензия
Для цитирования:
, , , . Наносистемы: физика, химия, математика. 2022;13(1):78-86. https://doi.org/10.17586/2220-8054-2022-13-1-78-86
For citation:
Jeba R., Radhika S., Padma C.M., Davix X.A. Synthesis and characterization of zirconia nanorods as a photo catalyst for the degradation of methylene blue dye. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(1):78-86. https://doi.org/10.17586/2220-8054-2022-13-1-78-86