Synthesis and biocompatibility study of ceria-mildronate nanocomposite in vitro
https://doi.org/10.17586/2220-8054-2022-13-1-96-103
Abstract
Nanoscale cerium dioxide (CeO2, nanoceria) possesses notable redox activity, which is actively used in advanced biomedical applications. The low toxicity, high biocompatibility and antioxidant activity of nanoceria make it a new generation nanozyme with a unique activity. Combination of nanoceria with various biologically active substances results in organic-inorganic nanocomposites possessing enhanced activity. Here, we synthesized a novel organic-inorganic hybrid material (Mil-CeO2) based on 2-(2-carboxylatoethyl)-1,1,1-trimethylhydrazinium and nanoceria, which has an ultra-small particle size, high antioxidant activity and pronounced biological activity. The analysis of cytotoxicity of the composite did not reveal any negative effects on the NCTC L929 mouse fibroblasts at concentrations below 10 mM. It was shown that the nanocomposite did not cause morphological changes in cells, or lead to cell death and mitochondrial membrane potential disruption, while maintaining viability in mouse fibroblasts in vitro. Additionally, we showed that Mil-CeO2 is capable of protecting cells from hydrogen peroxide (H2O2)-induced or radiation-induced oxidative stress.
About the Authors
A. L. PopovRussian Federation
D. D. Kolmanovich
Russian Federation
N. R. Popova
Russian Federation
S. S. Sorokina
Russian Federation
O. S. Ivanova
Russian Federation
N. N. Chukavin
Russian Federation
A. B. Shcherbakov
Russian Federation
T. O. Kozlova
Russian Federation
S. A. Kalashnikova
Russian Federation
V. K. Ivanov
Russian Federation
References
1. Singh S. Cerium oxide based nanozymes: Redox phenomenon at biointerfaces. Biointerphases, 2016, 11(4), P. 04B202.
2. Saifi M.A., Seal S., Godugu C. Nanoceria, the versatile nanoparticles: Promising biomedical applications. J. Control Release, 2021, 338, P. 164-189.
3. Lord M.S., Berret J.F., Singh S., Vinu A., Karakoti A.S. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. Small, 2021, 17(51), P. e2102342.
4. Ivanov V.K., Baranchikov A.E., Ivanova Polezhaeva O.S., Kopitsa G.P., Tretyakov Y.D. Oxygen nonstoichiometry of nanocrystalline ceria.Russian Journal of Inorganic Chemistry, 2010, 55(3), P. 325-327.
5. Seminko V., Maksimchuk P., Grygorova G., Okrushko E., Avrunin O., Semenets V., Malyukin Y. Mechanism and Dynamics of Fast Redox Cycling in Cerium Oxide Nanoparticles at High Oxidant Concentration. J. Phys. Chem. C, 2021, 125(8), P. 4743-4749.
6. Malyukin Y., Maksimchuk P., Seminko V., Okrushko E., Spivak N. Limitations of Self-Regenerative Antioxidant Ability of Nanoceria Imposed by Oxygen Diffusion. J. Phys. Chem. C, 2018, 122(28), P. 16406-16411.
7. Malyukin Y., Klochkov V., Maksimchuk P., Seminko V., Spivak N. Oscillations of Cerium Oxidation State Driven by Oxygen Diffusion in Colloidal Nanoceria (CeO2-x). Nanoscale Res Lett, 2017, 12, P. 566.
8. Shekunova T.O., Lapkina L.A., Shcherbakov A.B., Meshkov I.N., Ivanov V.K., Tsivadze A.Yu., Gorbunova Y.G. Deactivation of singlet oxygen by cerium oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, P. 111925.
9. Xue Y., Luan Q., Yang D., Yao X., Zhou K. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C, 2011, 115, P. 4433-4438.
10. Plakhova T., Romanchuk A., Butorin S., Konyukhova A., Egorov A., Shiryaev A., Baranchikov A., Dorovatovskii P., Huthwelker T., Gerber E., Bauters S., Sozarukova M., Scheinost A., Ivanov V., Kalmykov S., Kvashnina K. Towards the surface hydroxyl species in CeO2 nanoparticles. Nanoscale, 2019, 11(39), P. 18142-18149.
11. Das S., Dowding J.M., Klump K.E., McGinnis J.F., Self W., Seal S. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine, 2013, 8, P. 1483-1508.
12. Bhushan B., Gopinath P. Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles. J Mater Chem B, 2015, 3(24), P. 4843-4852.
13. Pagliari F., Mandoli C., Forte G., Magnani E., Pagliari S., Nardone G., Licoccia S., Minieri M., Di Nardo P., Traversa E. Cerium Oxide Nanoparticles Protect Cardiac Progenitor Cells from Oxidative Stress. ACS Nano, 2012, 6(5), P. 3767-3775.
14. Hirst S.M., Karakoti A., Singh S., Self W., Tyler R., Seal S., Reilly C.M. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Envirom Toxicology, 2013, 28(2), P. 107-118.
15. Popov A.L., Zaichkina S.I., Popova N.R., Rozanova O.M., Romanchenko S.P., Ivanova O.S., Smirnov A.A., Mironova E.V., Selezneva I.I., Ivanov V.K. Radioprotective effects of ultra-small citrate-stabilized cerium oxide nanoparticles. RSC Advances, 2016, 6, P. 106141-106149.
16. Inbaraj S.B., Chen B.H. An overview on recent in vivo biological application of cerium oxide nanoparticles. Asian J Pharm Sci, 2020, 15(5), P. 558-575.
17. Heckert E.G., Karakoti A.S., Seal S., Self W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008, 29(18), P. 2705-9.
18. Zhao H., Zhang R., Yan X., Fan K. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J. Mater. Chem. B, 2021, 9, P. 6939- 6957.
19. Heckert E.G., Karakoti A.S., Seal S., Self W.T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomater, 2008, 29, P. 2705-2709.
20. Baldim V., Bedioui F., Mignet N., Margaill I., Berret J.-F. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale, 2018, 10, P. 6971-6980.
21. Shcherbakov A., Zholobak N., Spivak N., Ivanov V. Advances and prospects of using nanocrystalline ceria in cancer theranostics.Russian Journal of Inorganic Chemistry, 2014, 59(13), P. 1556-1575.
22. Zeng L., Cheng H., Dai Y., Su Z., Wang C., Lei L., Lin D., Li X., Chen H., Fan K., Shi S. In Vivo Regenerable Cerium Oxide Nanozyme-Loaded pH/H(2)O(2)-Responsive Nanovesicle for Tumor-Targeted Photothermal and Photodynamic Therapies. ACS Appl Mater Interfaces, 2021, 13(1), P. 233-244.
23. Nourmohammadi E., Khoshdel-Sarkarizi H., Nedaeinia R., Darroudi M., Kazemi Oskuee R. Cerium oxide nanoparticles: A promising tool for the treatment of fibrosarcoma in-vivo. Mater Sci Eng C Mater Biol Appl, 2020, 109, P. 110533.
24. Qi M., Li W., Zheng X., Li X., Sun Y., Wang Y., Li C., Wang L. Cerium and Its Oxidant-Based Nanomaterials for Antibacterial Applications: A State-of-the-Art Review. Front. Mater., 2020, 7.
25. Zamani K., Allah-Bakhshi N., Akhavan F., Yousefi M., Golmoradi R., Ramezani M., Bach H., Razavi S., Irajian G.R., Gerami M., Pakdin-Parizi A., Tafrihi M., Ramezani F. Antibacterial effect of cerium oxide nanoparticle against Pseudomonas aeruginosa. BMC Biotechnol, 2021, 21(1), P. 68.
26. Pop O.L., Mesaros A., Vodnar D.C., Suharoschi R., Taˇbaˇran F., Magerus¸an L., To´dor I.S., Diaconeasa Z., Balint A., Ciontea L., Socaciu C. Cerium Oxide Nanoparticles and Their Efficient Antibacterial Application In Vitro against Gram-Positive and Gram-Negative Pathogens. Nanomaterials (Basel), 2020, 10(8), P. 1614.
27. Shydlovska O., Kharchenko E., Osenniy I., Spivak M., Shcherbakov A., Zholobak N. Nanoparticles of cerium dioxide - an effective antiviral agent and adjuvant of biologically active molecules. ScienceRise Biological Science, 2018, 1(10).
28. Neal C.J., Fox C.R., Sakthivel T.S., Kumar U., Fu Y., Drake C., Parks G.D. Seal S. Metal-Mediated Nanoscale Cerium Oxide Inactivates Human Coronavirus and Rhinovirus by Surface Disruption. ACS Nano, 2021, 15(9), P. 14544-14556.
29. Mohamed H.E.A, Afridi S., Khalil A.T, Ali M., Zohra T, Akhtar R., Ikram A., Shinwari Z.K., Maaza M. Promising antiviral, antimicrobial and therapeutic properties of green nanoceria. Nanomedicine (Lond), 2020, 15(5), P. 467-488.
30. Shcherbakov A.B., Zholobak N.M., Ivanov V.K. Biological, biomedical and pharmaceutical applications of cerium oxide. Cerium Oxide (CeO?): Synthesis, Properties and Applications, 2020, P. 279-358.
31. Shcherbakov A., Reukov V., Yakimansky A., Krasnopeeva E., Ivanova O., Popov A., Ivanov V. CeO2 Nanoparticle-Containing Polymers for Biomedical Applications: A Review. Polymers, 2021, 13(6), P. 924.
32. Yang B., Chen Y., Shi J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem Rev, 2019, 119(8), P. 4881-4985.
33. Krysanov E., Demidova T., Ivanova O., Ordzhonikidze K., Shcherbakov A., Ivanov V. Synergetic action of ceria nanoparticles and doxorubicin on the early development of two fish species, Danio rerio and Puntius tetrazona. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(3), P. 289-302.
34. Xu C., Lin Y., Wang J., Wu L., Wei W., Ren J., Qu X. Nanoceria-triggered synergetic drug release based on CeO2-capped mesoporous silica host-guest interactions and switchable enzymatic activity and cellular effects of CeO2 Adv Healthc Mater., 2013, 2(12), P. 1591-9.
35. Liu X., Liu J., Chen S., Xie Y., Fan Q., Zhou J., Bao J., Wei T., Dai Z. Dual-path modulation of hydrogen peroxide to ameliorate hypoxia for enhancing photodynamic/starvation synergistic therapy. J Mater Chem B, 2020, 8(43), P. 9933-9942.
36. Barkam S., Das S., Saraf S., McCormack R., Richardson D., Atencio L., Moosavifazel V., Seal S. The change in antioxidant properties of dextran-coated redox active nanoparticles due to synergetic photoreduction-oxidation. Chemistry, 2015, 21(36), P. 12646-56.
37. Zholobak N. M., Shcherbakov A. B., Bogorad-Kobelska A. S., Ivanova O. S., Baranchikov A. Ye., Spivak N. Ya., Ivanov V. K. Panthenol-stabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROS-induced and UV-induced damage. J Photochem Photobiol B, 2014, 130, P. 102-108.
38. Zholobak N.M., Shcherbakov A.B., Ivanova O.S., Reukov V., Baranchikov A.E., Ivanov V.K. Nanoceria-curcumin conjugate: synthesis and selective cytotoxicity against cancer cells under oxidative stress conditions. J. Photochem. Photobiol. B, 2020, 209, P. 111921.
39. Shydlovska O., Kharchenko E., Zholobak N., Shcherbakov A., Marynin A., Ivanova O., Baranchikov A., Ivanov V. Cerium oxide nanoparticles increase the cytotoxicity of TNF-alpha in vitro. Nanosystems: Phys. Chem. Math., 2018, 9(4), P. 537-543.
40. Pupure J., Fernandes M. A. S., Santos M. S., Moreno A. J. M., Kalvinsh I., Klusa V., Oliveira C. R. Mitochondria as the target for mildronate’s protective effects in azidothymidine (AZT)-induced toxicity of isolated rat liver mitochondria. Cell Biochem Funct, 2008, 26, P. 620-631.
41. Pupure J., Isajevs S., Skapare E., Rumaks J., Svirskis S., Svirina D., Kalvinsh I., Klusa V. Neuroprotective properties of mildronate, a mitochondria-targeted small molecule. Neurosci Lett, 2010, 470(2), P. 100-105.
42. Wang C., Youle R.J. The Role of Mitochondria in Apoptosis. Annu Rev Genet, 2009, 43, P. 95-118.
43. Lin M.T., Beal M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), P. 787-795.
44. Luo Y., Ma J., Lu W. The Significance of Mitochondrial Dysfunction in Cancer.Int J Mol Sci, 2020, 21(16), P. 5598.
45. Asati A., Santra S., Kaittanis C., Perez J.M. Surface-Charge-Dependent Cell Localization and Cytotoxicity of Cerium Oxide Nanoparticles. ACS Nano, 2010, 4(9), P. 5321-5331.
46. Ma Y., Li P., Zhao L., Liu J., Yu J., Huang Y., Zhu Y., Li Z., Zhao R., Hua S., Zhu Y., Zhang Z. Size-Dependent Cytotoxicity and Reactive Oxygen Species of Cerium Oxide Nanoparticles in Human Retinal Pigment Epithelia Cells.Int J Nanomedicine, 2021, 16, P. 5333-5341.
47. Garc´ıa-Salvador A., Katsumiti A., Rojas E., Aristimun˜o C., Betanzos M., Mart´ınez-Moro M., Moya S.E., Gon˜i-de-Cerio F. A Complete In Vitro Toxicological Assessment of the Biological Effects of Cerium Oxide Nanoparticles: From Acute Toxicity to Multi-Dose Subchronic Cytotoxicity Study. Nanomaterials (Basel), 2021, 11(6), P. 1577.
48. Popov A.L., Popova N.R., Selezneva I.I., Akkizov A.Y., Ivanov V.K. Cerium oxide nanoparticles stimulate proliferation of primary mouse embry- onic fibroblasts in vitro. Materials Science and Engineering C, 2016, 68, P. 406-413.
49. Popov A., Abakumov M., Savintseva I., Ermakov A., Popova N., Ivanova O., Kolmanovich D., Baranchikov A., Ivanov V. Biocompatible dextran- coated gadolinium-doped cerium oxide nanoparticles as MRI contrast agents with high T1 relaxivity and selective cytotoxicity to cancer cells. J. Mater. Chem. B, 2021, 9, P. 6586-6599.
50. Xiong S., Mu T., Wang G., Jiang X. Mitochondria-mediated apoptosis in mammals. Protein Cell, 2014, 5 P. 737-749.
51. Jana S.K., Banerjee P., Das S., Seal S. Chaudhury K. Redox-active nanoceria depolarize mitochondrial membrane of human colon cancer cells. J. Nanopart. Res., 2014, 16, P. 2441.
52. Xu P.T., Maidment B.W., Antonic V., Jackson I.L., Das S., Zodda A., Zhang X., Seal S., Vujaskovic Z. Cerium Oxide Nanoparticles: A Potential Medical Countermeasure to Mitigate Radiation-Induced Lung Injury in CBA/J Mice. Radiat Res, 2016, 185(5), P. 516-526.
53. Perez J.M., Asati A., Nath S., Kaittanis C. Synthesis of Biocompatible Dextran-Coated Nanoceria with pH-Dependent Antioxidant Properties. Small, 2008, 4(5), P. 552-556.
54. Akhtar M.J., Ahamed M., Alhadlaq H. Anti-Inflammatory CeO2 Nanoparticles Prevented Cytotoxicity Due to Exogenous Nitric Oxide Donors via Induction Rather Than Inhibition of Superoxide/Nitric Oxide in HUVE Cells. Molecules, 2021, 26(17), P. 5416.
55. Akhtar M.J., Ahamed M., Alhadlaq H. Anti-Inflammatory CeO2 Nanoparticles Prevented Cytotoxicity Due to Exogenous Nitric Oxide Donors via Induction Rather Than Inhibition of Superoxide/Nitric Oxide in HUVE Cells. Molecules, 2021, 26(17), P. 5416.
56. Zou S., Zhu X., Zhang L., Guo F., Zhang M., Tan Y., Gong A., Fang Z., Ju H., Wu C., Du F. Biomineralization-Inspired Synthesis of Cerium-Doped Carbonaceous Nanoparticles for Highly Hydroxyl Radical Scavenging Activity. Nanoscale Res Lett, 2018, 13(1), P. 76.
57. Zhai J.H., Wu Y., Wang X.Y., Cao Y., Xu K., Xu L., Guo Y. Antioxidation of Cerium Oxide Nanoparticles to Several Series of Oxidative Damage Related to Type II Diabetes Mellitus In Vitro. Med Sci Monit., 2016, 22, P. 3792-3797.
58. Leach J.K., Van Tuyle G., Lin P. S., Schmidt-Ullrich R., Mikkelsen R.B. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res, 2001, 61(10), P. 3894-3901.
59. Averbeck D., Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts.Int J Mol Sci.,2021, 22(20), P. 11047.
60. Murray V., Hardie M.E., Gautam S.D.Comparison of Different Methods to Determine the DNA Sequence Preference of Ionising Radiation-Induced DNA Damage. Genes (Basel), 2019, 11(1), P. 8.
Review
For citations:
Popov A.L., Kolmanovich D.D., Popova N.R., Sorokina S.S., Ivanova O.S., Chukavin N.N., Shcherbakov A.B., Kozlova T.O., Kalashnikova S.A., Ivanov V.K. Synthesis and biocompatibility study of ceria-mildronate nanocomposite in vitro. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(1):96-103. https://doi.org/10.17586/2220-8054-2022-13-1-96-103