A new approach to function-structure modeling of the surface modified polymers
https://doi.org/10.17586/2220-8054-2022-13-1-115-127
Abstract
We introduce a novel approach to function-structure modeling of the polymer materials. It’s based on mathematical and statistical processing of the images obtained by scanning electron microscopy (SEM) of the corresponding surfaces. We studied the correlation-rotational anisotropy, the degrees of planar and contour heterogeneity and the morphological spectra of the SEM images to characterize the function-structure relationships quantitatively. The introduced quantitative characteristics will allow to rationalize the choice of chemical compositions of the modifying gas mixtures (for example, helium-fluorine-oxygen) that provide the maximum possible wetting edge angles for the materials under consideration with reference polar and non-polar liquids.
About the Authors
F. A. DoroninRussian Federation
A. G. Evdokimov
Russian Federation
Yu. V. Rudyak
Russian Federation
G. O. Rytikov
Russian Federation
I. P. Taranets
Russian Federation
V. G. Nazarov
Russian Federation
References
1. Zhang X., Shi F., et al. Superhydrophobic surfaces: From structural control to functional application. J. Mater. Chem., 2008, 18, P. 621-633.
2. Cui N.Y., Brown N.M.D. Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma. Appl. Surf. Sci., 2002, 189 (1-2), P. 31-38.
3. Peyroux J., Dubois M., et al. Surface modification of low-density polyethylene packaging film via direct fluorination. Surf. Coatings Technol., 2016, 292, P. 144-154.
4. Luo M.L., Zhao J.Q., Tang W., Pu C.S. Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl. Surf. Sci., 2005, 249 (1-4), P. 76-84.
5. Long X., He L., et al. Surface modification of polypropylene non-woven fabric for improving its hydrophilicity. Surf. Eng., 2018, 34 (11), P. 818-824.
6. Kahradeh K.H., Saievar-Iranizad E., Bayat A. Electrophoretically deposited carbon micro and nanospheres thin films as superhydrophobic coatings. Surf. Coatings Technol., 2017, 319, P. 318-325.
7. Guruvenket S., Rao G.M., Komath M., Raichur A.M. Plasma surface modification of polystyrene and polyethylene. Appl. Surf. Sci., 2004, 236 (1-4), P. 278-284.
8. Beyer M.K., Clausen-Schaumann H. Mechanochemistry: The mechanical activation of covalent bonds. Chem. Rev., 2005, 105 (8), P. 2921-2948.
9. Bora U., Sharma P., et al. Photochemical activation of a polycarbonate surface for covalent immobilization of a protein ligand. Talanta, 2006, 70 (3), P. 624-629.
10. Bezbradica D., Jugovic´ B., et al. Electrochemically synthesized polyaniline as support for lipase immobilization. J. Mol. Catal. B Enzym., 2011, 70 (1-2), P. 55-60.
11. Dryakhlov V.O., Nikitina M.Y., et al. Effect of parameters of the corona discharge treatment of the surface of polyacrylonitrile membranes on the separation efficiency of oil-in-water emulsions. Surf. Eng. Appl. Electrochem., 2015, 51, P. 406-411.
12. Sarani A., Nikiforov A.Y., et al. Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture. Appl. Surf. Sci., 2011, 257 (20), P. 8737-8741.
13. Kharitonov A.P., Taege R., et al. Direct fluorination - Useful tool to enhance commercial properties of polymer articles. J. Fluor. Chem., 2005, 126 (2), P. 251-263.
14. Shadpour H., Musyimi H., Chen J., Soper S.A. Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance. J. Chromatogr. A, 2006, 1111 (2), P. 238-251.
15. Sonnier R., Leroy E., et al. Polyethylene/ground tyre rubber blends: Influence of particle morphology and oxidation on mechanical properties. Polym. Test., 2007, 26 (2), P. 274-281.
16. Xiao K.Q., Zhang L.C., Zarudi I. Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites.Compos. Sci. Technol., 2007, 67 (2), P. 177-182.
17. Sailaja R.R.N., Deepthi M.V. Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater. Des., 2010, 31 (9), P. 4369-4379.
18. Sabatini V., Catto` C., et al. Protective features, durability and biodegration study of acrylic and methacrylic fluorinated polymer coatings for marble protection. Prog. Org. Coatings, 2018, 114, P. 47-57.
19. Riccardi C., Barni R., et al. Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment. Appl. Surf. Sci., 2003, 211 (1-4), P. 386-397.
20. Luzinov I., Minko S., Tsukruk V.V. Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog. Polym. Sci., 2004, 29 (7), P. 635-698.
21. Goddard J.M., Hotchkiss J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci., 2007, 32 (7), P. 698-725.
22. Zhao C., Xue J., Ran F., Sun S. Modification of polyethersulfone membranes - A review of methods. Prog. Mater. Sci., 2013, 58 (1), P. 76-150.
23. ul Haq A., Boyd A., et al. Corona Discharge-Induced Functional Surfaces of Polycarbonate and Cyclic Olefins Substrates. Surf. Coatings Technol., 2019, 362, P. 185-190.
24. Burmeister F., Badowsky W., et al. Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces. Appl. Surf. Sci., 1999, 144-145, P. 461-466.
25. Asua J.M. Miniemulsion polymerization. Prog. Polym. Sci., 2002, 27 (7), P. 1283-1346.
26. Wei G., Ma P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 2004, 25 (19), P. 4749-4757.
27. Park H.B., Jung C.H., et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318 (5848), P. 254-258.
28. Zaitsev A., Lacoste A., et al. Nanotexturing of plasma-polymer thin films using argon plasma treatment. Surf. Coatings Technol., 2017, 330, P. 196-203.
29. Isaev E.A., Pervukhin D.V., et al. Platelet adhesion quantification to fluorinated polyethylene from the structural caracteristics of its surface. Math. Biol. Bioinforma., 2019, 14 (2), P. 420-429.
30. Yang Z., Wang L., et al. Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning. Appl. Surf. Sci., 2017, 401, P. 146-155.
31. Feng L., Li S., et al. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater., 2002, 14 (24), P. 1857-1860.
32. Liu Y., Schaefer J.A. The sliding friction of thermoplastic polymer composites tested at low speeds. Wear, 2006, 261 (5-6), P. 568-577.
33. Stuart M.A.C., Huck W.T.S., et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 2010, 9, P. 101-113.
34. Nunez E.E., Gheisari R., Polycarpou A.A. Tribology review of blended bulk polymers and their coatings for high-load bearing applications. Tribol.Int., 2019, 129, P. 92-111.
35. Egerton R.F., Li P., Malac M. Radiation damage in the TEM and SEM. Micron, 2004, 35 (6), P. 399-409.
36. Efimov A.E., Tonevitsky A.G., Dittrich M., Matsko N.B. Atomic force microscope (AFM) combined with the ultramicrotome: A novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples. J. Microsc., 2007, 226 (3), P. 207-216.
37. Vernitskaya T.V. Polypyrrole: a conducting polymer; its synthesis, properties and applications.Russ. Chem. Rev., 1997, 66 (5), P. 443-457.
38. Chu P.K., Li L. Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys., 2006, 96 (2-3), P. 253-277.
39. Misyura S.Y., Kuznetsov G. V., et al. The influence of the surface microtexture on wettability properties and drop evaporation. Surf. Coatings Technol., 2019, 375, P. 458-467.
40. Rytikov G.O., Doronin F.A., et al. The automating of the quantitative analysis and characterization of the polymer based films surfaces SEM-images. J. Phys. Conf. Ser., 2020, 1546, 012027.
41. Sarvazyan A.P., Rudenko O.V., et al. Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol., 1998, 24 (9), P. 1419-1435.
42. Zuccaro G., Gladkova N., et al. Optical coherence tomography of the esophagus and proximal stomach in health and disease. Am. J. Gastroenterol., 2001, 96 (9), P. 2633-2639.
43. Li Q. Recent progress in computer-aided diagnosis of lung nodules on thin-section CT.Comput. Med. Imaging Graph., 2007, 31 (4-5), P. 248-257.
44. Ren H., Park K.C., et al. Early detection of carcinoma in situ of the bladder: A comparative study of white light cystoscopy, narrow band imaging, 5-ALA fluorescence cystoscopy and 3-dimensional optical coherence tomography. J. Urol., 2012, 187 (3), P. 1063-1070.
45. Taruttis A., Ntziachristos V. Translational optical imaging. Am. J. Roentgenol., 2012, 199, P. 263-271.
46. Domenyuk D.A., Zelensky V.A., et al. Application of Laboratory and X-Ray Gentral Studies un Early Diagnostics of Metabolic Disturbances of Bone Tissue in Children with Autoimmune Diabetes Mellitus. Entomol. Appl. Sci. Lett., 2018, 5 (4), P. 1-12.
47. Garc´ıa R., Pe´rez R. Dynamic atomic force microscopy methods. Surf. Sci. Rep., 2002, 47 (6-8), P. 197-301.
48. Butt H.J., Cappella B., Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep., 2005, 59 (1-6), P. 1-152.
49. Paredes J.I., Villar-Rodil S., et al. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 2009, 25 (10), P. 5957-5968.
50. Haase K., Pelling A.E. Investigating cell mechanics with atomic force microscopy. J. R. Soc.Interface, 2015, 12 (104).
51. Liu X., Song D., et al. Nanopore structure of deep-burial coals explored by AFM. Fuel, 2019, 246, P. 9-17.
52. Nazarov V.G., Stolyarov V.P., Evlampieva L.A., Fokin A.V. Heterophase fluorination of polymers. Dokl. Phys. Chem., 1996, 350 (5), P. 639-641.
53. Kharitonov A.P., Simbirtseva G.V., et al. Enhanced anti-graffiti or adhesion properties of polymers using versatile combination of fluorination and polymer grafting. Prog. Org. Coatings., 2015, 88, P. 127-136.
54. Nazarov V.G. Surface characteristics of modified polymeric materials, Kolloidn. Zhurnal, 1997, 59 (2), P. 206-211.
55. Nazarov V.G., Stolyarov V.P. Modified polymer substrates for the formation of submicron particle ensembles from colloidal solution. Colloid J., 2016, 78, P. 75-82.
56. Nazarov V.G., Stolyarov V.P., et al. Heterogeneous fluorine-containing surface macro-, micro- and nanostructures in polymer films and their applications. Polym. Sci. - Ser. A, 2013, 55, P. 652-665.
57. Drozdov S.A., Nazarov V.G., et al. The polymer composites’ morphological structure simulation. Nanosystems: Phys., Chem., Math., 2017, 8 (1), P. 137-145.
58. Nazarov V.G., Stolyarov V.P., et al.Comparison of the Effects of Some Modification Methods on the Characteristics of Ultrahigh-Molecular-Weight Polyethylene and Composites on Its Basis. Polym. Sci. - Ser. A, 2019, 61, P. 325-333.
59. Nazarov V.G., Doronin F.A., et al. Oxyfluorination-Controlled Variations in the Wettability of Polymer Film Surfaces. Colloid J., 2019, 81, P. 146- 157.
Review
For citations:
Doronin F.A., Evdokimov A.G., Rudyak Yu.V., Rytikov G.O., Taranets I.P., Nazarov V.G. A new approach to function-structure modeling of the surface modified polymers. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(1):115-127. https://doi.org/10.17586/2220-8054-2022-13-1-115-127