Preview

Наносистемы: физика, химия, математика

Расширенный поиск

A new approach to function-structure modeling of the surface modified polymers

https://doi.org/10.17586/2220-8054-2022-13-1-115-127

Аннотация

We introduce a novel approach to function-structure modeling of the polymer materials. It’s based on mathematical and statistical processing of the images obtained by scanning electron microscopy (SEM) of the corresponding surfaces. We studied the correlation-rotational anisotropy, the degrees of planar and contour heterogeneity and the morphological spectra of the SEM images to characterize the function-structure relationships quantitatively. The introduced quantitative characteristics will allow to rationalize the choice of chemical compositions of the modifying gas mixtures (for example, helium-fluorine-oxygen) that provide the maximum possible wetting edge angles for the materials under consideration with reference polar and non-polar liquids.

Об авторах

F. Doronin
Moscow Polytechnic University
Россия


A. Evdokimov
Moscow Polytechnic University
Россия


Yu. Rudyak
Moscow Polytechnic University
Россия


G. Rytikov
Moscow Polytechnic University; State university of management
Россия


I. Taranets
Moscow Polytechnic University
Россия


V. Nazarov
Moscow Polytechnic University
Россия


Список литературы

1. Zhang X., Shi F., et al. Superhydrophobic surfaces: From structural control to functional application. J. Mater. Chem., 2008, 18, P. 621-633.

2. Cui N.Y., Brown N.M.D. Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma. Appl. Surf. Sci., 2002, 189 (1-2), P. 31-38.

3. Peyroux J., Dubois M., et al. Surface modification of low-density polyethylene packaging film via direct fluorination. Surf. Coatings Technol., 2016, 292, P. 144-154.

4. Luo M.L., Zhao J.Q., Tang W., Pu C.S. Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl. Surf. Sci., 2005, 249 (1-4), P. 76-84.

5. Long X., He L., et al. Surface modification of polypropylene non-woven fabric for improving its hydrophilicity. Surf. Eng., 2018, 34 (11), P. 818-824.

6. Kahradeh K.H., Saievar-Iranizad E., Bayat A. Electrophoretically deposited carbon micro and nanospheres thin films as superhydrophobic coatings. Surf. Coatings Technol., 2017, 319, P. 318-325.

7. Guruvenket S., Rao G.M., Komath M., Raichur A.M. Plasma surface modification of polystyrene and polyethylene. Appl. Surf. Sci., 2004, 236 (1-4), P. 278-284.

8. Beyer M.K., Clausen-Schaumann H. Mechanochemistry: The mechanical activation of covalent bonds. Chem. Rev., 2005, 105 (8), P. 2921-2948.

9. Bora U., Sharma P., et al. Photochemical activation of a polycarbonate surface for covalent immobilization of a protein ligand. Talanta, 2006, 70 (3), P. 624-629.

10. Bezbradica D., Jugovic´ B., et al. Electrochemically synthesized polyaniline as support for lipase immobilization. J. Mol. Catal. B Enzym., 2011, 70 (1-2), P. 55-60.

11. Dryakhlov V.O., Nikitina M.Y., et al. Effect of parameters of the corona discharge treatment of the surface of polyacrylonitrile membranes on the separation efficiency of oil-in-water emulsions. Surf. Eng. Appl. Electrochem., 2015, 51, P. 406-411.

12. Sarani A., Nikiforov A.Y., et al. Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture. Appl. Surf. Sci., 2011, 257 (20), P. 8737-8741.

13. Kharitonov A.P., Taege R., et al. Direct fluorination - Useful tool to enhance commercial properties of polymer articles. J. Fluor. Chem., 2005, 126 (2), P. 251-263.

14. Shadpour H., Musyimi H., Chen J., Soper S.A. Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance. J. Chromatogr. A, 2006, 1111 (2), P. 238-251.

15. Sonnier R., Leroy E., et al. Polyethylene/ground tyre rubber blends: Influence of particle morphology and oxidation on mechanical properties. Polym. Test., 2007, 26 (2), P. 274-281.

16. Xiao K.Q., Zhang L.C., Zarudi I. Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites.Compos. Sci. Technol., 2007, 67 (2), P. 177-182.

17. Sailaja R.R.N., Deepthi M.V. Mechanical and thermal properties of compatibilized composites of polyethylene and esterified lignin. Mater. Des., 2010, 31 (9), P. 4369-4379.

18. Sabatini V., Catto` C., et al. Protective features, durability and biodegration study of acrylic and methacrylic fluorinated polymer coatings for marble protection. Prog. Org. Coatings, 2018, 114, P. 47-57.

19. Riccardi C., Barni R., et al. Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment. Appl. Surf. Sci., 2003, 211 (1-4), P. 386-397.

20. Luzinov I., Minko S., Tsukruk V.V. Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog. Polym. Sci., 2004, 29 (7), P. 635-698.

21. Goddard J.M., Hotchkiss J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci., 2007, 32 (7), P. 698-725.

22. Zhao C., Xue J., Ran F., Sun S. Modification of polyethersulfone membranes - A review of methods. Prog. Mater. Sci., 2013, 58 (1), P. 76-150.

23. ul Haq A., Boyd A., et al. Corona Discharge-Induced Functional Surfaces of Polycarbonate and Cyclic Olefins Substrates. Surf. Coatings Technol., 2019, 362, P. 185-190.

24. Burmeister F., Badowsky W., et al. Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces. Appl. Surf. Sci., 1999, 144-145, P. 461-466.

25. Asua J.M. Miniemulsion polymerization. Prog. Polym. Sci., 2002, 27 (7), P. 1283-1346.

26. Wei G., Ma P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 2004, 25 (19), P. 4749-4757.

27. Park H.B., Jung C.H., et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318 (5848), P. 254-258.

28. Zaitsev A., Lacoste A., et al. Nanotexturing of plasma-polymer thin films using argon plasma treatment. Surf. Coatings Technol., 2017, 330, P. 196-203.

29. Isaev E.A., Pervukhin D.V., et al. Platelet adhesion quantification to fluorinated polyethylene from the structural caracteristics of its surface. Math. Biol. Bioinforma., 2019, 14 (2), P. 420-429.

30. Yang Z., Wang L., et al. Superhydrophobic epoxy coating modified by fluorographene used for anti-corrosion and self-cleaning. Appl. Surf. Sci., 2017, 401, P. 146-155.

31. Feng L., Li S., et al. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater., 2002, 14 (24), P. 1857-1860.

32. Liu Y., Schaefer J.A. The sliding friction of thermoplastic polymer composites tested at low speeds. Wear, 2006, 261 (5-6), P. 568-577.

33. Stuart M.A.C., Huck W.T.S., et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 2010, 9, P. 101-113.

34. Nunez E.E., Gheisari R., Polycarpou A.A. Tribology review of blended bulk polymers and their coatings for high-load bearing applications. Tribol.Int., 2019, 129, P. 92-111.

35. Egerton R.F., Li P., Malac M. Radiation damage in the TEM and SEM. Micron, 2004, 35 (6), P. 399-409.

36. Efimov A.E., Tonevitsky A.G., Dittrich M., Matsko N.B. Atomic force microscope (AFM) combined with the ultramicrotome: A novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples. J. Microsc., 2007, 226 (3), P. 207-216.

37. Vernitskaya T.V. Polypyrrole: a conducting polymer; its synthesis, properties and applications.Russ. Chem. Rev., 1997, 66 (5), P. 443-457.

38. Chu P.K., Li L. Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys., 2006, 96 (2-3), P. 253-277.

39. Misyura S.Y., Kuznetsov G. V., et al. The influence of the surface microtexture on wettability properties and drop evaporation. Surf. Coatings Technol., 2019, 375, P. 458-467.

40. Rytikov G.O., Doronin F.A., et al. The automating of the quantitative analysis and characterization of the polymer based films surfaces SEM-images. J. Phys. Conf. Ser., 2020, 1546, 012027.

41. Sarvazyan A.P., Rudenko O.V., et al. Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol., 1998, 24 (9), P. 1419-1435.

42. Zuccaro G., Gladkova N., et al. Optical coherence tomography of the esophagus and proximal stomach in health and disease. Am. J. Gastroenterol., 2001, 96 (9), P. 2633-2639.

43. Li Q. Recent progress in computer-aided diagnosis of lung nodules on thin-section CT.Comput. Med. Imaging Graph., 2007, 31 (4-5), P. 248-257.

44. Ren H., Park K.C., et al. Early detection of carcinoma in situ of the bladder: A comparative study of white light cystoscopy, narrow band imaging, 5-ALA fluorescence cystoscopy and 3-dimensional optical coherence tomography. J. Urol., 2012, 187 (3), P. 1063-1070.

45. Taruttis A., Ntziachristos V. Translational optical imaging. Am. J. Roentgenol., 2012, 199, P. 263-271.

46. Domenyuk D.A., Zelensky V.A., et al. Application of Laboratory and X-Ray Gentral Studies un Early Diagnostics of Metabolic Disturbances of Bone Tissue in Children with Autoimmune Diabetes Mellitus. Entomol. Appl. Sci. Lett., 2018, 5 (4), P. 1-12.

47. Garc´ıa R., Pe´rez R. Dynamic atomic force microscopy methods. Surf. Sci. Rep., 2002, 47 (6-8), P. 197-301.

48. Butt H.J., Cappella B., Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep., 2005, 59 (1-6), P. 1-152.

49. Paredes J.I., Villar-Rodil S., et al. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 2009, 25 (10), P. 5957-5968.

50. Haase K., Pelling A.E. Investigating cell mechanics with atomic force microscopy. J. R. Soc.Interface, 2015, 12 (104).

51. Liu X., Song D., et al. Nanopore structure of deep-burial coals explored by AFM. Fuel, 2019, 246, P. 9-17.

52. Nazarov V.G., Stolyarov V.P., Evlampieva L.A., Fokin A.V. Heterophase fluorination of polymers. Dokl. Phys. Chem., 1996, 350 (5), P. 639-641.

53. Kharitonov A.P., Simbirtseva G.V., et al. Enhanced anti-graffiti or adhesion properties of polymers using versatile combination of fluorination and polymer grafting. Prog. Org. Coatings., 2015, 88, P. 127-136.

54. Nazarov V.G. Surface characteristics of modified polymeric materials, Kolloidn. Zhurnal, 1997, 59 (2), P. 206-211.

55. Nazarov V.G., Stolyarov V.P. Modified polymer substrates for the formation of submicron particle ensembles from colloidal solution. Colloid J., 2016, 78, P. 75-82.

56. Nazarov V.G., Stolyarov V.P., et al. Heterogeneous fluorine-containing surface macro-, micro- and nanostructures in polymer films and their applications. Polym. Sci. - Ser. A, 2013, 55, P. 652-665.

57. Drozdov S.A., Nazarov V.G., et al. The polymer composites’ morphological structure simulation. Nanosystems: Phys., Chem., Math., 2017, 8 (1), P. 137-145.

58. Nazarov V.G., Stolyarov V.P., et al.Comparison of the Effects of Some Modification Methods on the Characteristics of Ultrahigh-Molecular-Weight Polyethylene and Composites on Its Basis. Polym. Sci. - Ser. A, 2019, 61, P. 325-333.

59. Nazarov V.G., Doronin F.A., et al. Oxyfluorination-Controlled Variations in the Wettability of Polymer Film Surfaces. Colloid J., 2019, 81, P. 146- 157.


Рецензия

Для цитирования:


 ,  ,  ,  ,  ,   . Наносистемы: физика, химия, математика. 2022;13(1):115-127. https://doi.org/10.17586/2220-8054-2022-13-1-115-127

For citation:


Doronin F.A., Evdokimov A.G., Rudyak Yu.V., Rytikov G.O., Taranets I.P., Nazarov V.G. A new approach to function-structure modeling of the surface modified polymers. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(1):115-127. https://doi.org/10.17586/2220-8054-2022-13-1-115-127

Просмотров: 2


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)