Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Phase formation under conditions of self-organization of particle growth restrictions in the reaction system

https://doi.org/10.17586/2220-8054-2022-13-2-164-180

Abstract

A systematic analysis of literature data concerning the influence of methods and conditions of synthesis on the possibility of self-organization of particle growth restrictions during chemical reactions of solid phase has been conducted. The prospects of using such methods to obtain nano-crystalline phases are shown. It is demonstrated that a disadvantage of such methods of synthesis is the risk of forming precursor phases instead of target products. To avoid such an outcome, several methods of synthesis are proposed. Based on the analysis of literature data, examples of the transformation of precursor nanoparticles into nanocrystals of target phases are classified and presented. A scheme that allows optimal combination of synthesis methods to obtain nano-crystalline particles of a given composition, structure, size, and shape is designed.

About the Authors

O. V. Almjasheva
St. Petersburg State Electrotechnical University “LETI”
Russian Federation


V. I. Popkov
Ioffe Institute
Russian Federation


O. V. Proskurina
Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation


V. V. Gusarov
Ioffe Institute
Russian Federation


References

1. Kuni F.M., Rusanov A.I. The homogeneous nucleation theory and the fluctuation of the center of mass of a drop. Physics Letters A, 1969, 29 (6), P. 337-338.

2. Almjasheva O.V., Gusarov V.V. Metastable clusters and aggregative nucleation mechanism. Nanosystems: Physics, Chemistry, Mathematics, 2014, 5 (3), P. 405-417.

3. Shi R., Heo T.W., Wood B.C., Wang Y. Critical nuclei at hetero-phase interfaces. Acta Materialia, 2020, 200 (6201), P. 510-525.

4. Keesee R.G. Nucleation and Particle Formation in the Upper Atmosphere. J. of Geophysical Research, 1989, 94 (D12), P. 14683-14692.

5. Almyasheva O.V., Lomanova N.A., et al. The minimal size of oxide nanocrystals: phenomenological thermodynamic vs crystal-chemical approaches. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (4), P. 428-437.

6. Gusarov V.V. Fast Solid-Phase Chemical Reactions.Russian J. of General Chemistry, 1997, 67 (12), P. 1846-1851.

7. Popkov V.I., Almjasheva O.V., Gusarov V.V. The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders.Russian J. of Applied Chemistry, 2014, 87, P. 1417-1421.

8. Popkov V.I., Almjasheva O.V., et al. The role of pre-nucleus states in formation of nanocrystalline yttrium orthoferrite. Doklady Chemistry, 2016, 471, P. 356-359.

9. Gusarov V.V., Almjasheva O.V. The role of non-autonomous state of matter in the formation of structure and properties of nanomaterials. Chapter 13 in the book Nanomaterials: properties and promising applications. Ed. A.B. Yaroslavtsev. Scientific World Publishing House, Moscow, 2014, P. 378-403. (in Russian)

10. Kotov Yu.A., Azarkevich E.I., et al. Iron oxide nanopowders prepared by the electroexplosion of wire. Inorganic Materials, 2007, 43 (6), P. 633-637.

11. Kotov Y.A. The electrical explosion of wire: A method for the synthesis of weakly aggregated nanopowders. Nanotechnologies in Russia, 2009, 4 (7-8), P. 415-424.

12. Kotov Y.A., Samatov O.M., et al. Production and Characteristics of Composite Nanopowders Using a Fiber Ytterbium Laser. Technical Physics, 2011, 56 (5), P. 652-655.

13. Ilyin A.P. Development of electroexplosive technology for obtaining nanopowders at the High Voltage Research Institute at Tomsk Polytechnic University. Bulletin of the Tomsk Polytechnic University, 2003, 306 (1), P. 133-139.

14. Pozhidaeva O.V., Korytkova E.N., Romanov D.P., Gusarov V.V. Formation of ZrO2 nanocrystals in hydrothermal media of various chemical compositions.Russian J. of General Chemistry, 2002, 72 (6), P. 849-853.

15. Popkov V.I., Bachina A.K., et al. Synthesis, morphology and electrochemical properties of spherulite titania nanocrystals. Ceramics International, 2020, 56 (15), P. 24483-24487.

16. Ivanov V.K., Polezhaeva O.S. Synthesis of ultrathin ceria nanoplates.Russian J. of Inorganic Chemistry, 2009, 54 (10), P. 1528-1530.

17. Tyrsted C., Becker J., et al. In-Situ Synchrotron Radiation Study of Formation and Growth of Crystalline CexZr1-xO2 Nanoparticles Synthesized in Supercritical Water. Chemistry of Materials, 2010, 22 (5), P. 1814-1820.

18. Ivanov V.K., Kopitsa G.P., et al. Hydrothermal growth of ceria nanoparticles.Russian J. of Inorganic Chemistry, 2009, 54 (12), P. 1857-1861.

19. Enikeeva M.O., Danilovich D.P., Proskurina O.V., Gusarov V.V. Formation of nanocrystals based on equimolar mixture of lanthanum and yttrium orthophosphates under microwave-assisted hydrothermal synthesis. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (6), P. 705-715.

20. Popkov V.I., Almjasheva O.V., et al. Effect of spatial constraints on the phase evolution of YFeO3-based nanopowders under heat treatment of glycine-nitrate combustion products. Ceramics International, 2018, 44 (17), P. 20906-20912.

21. Zaboeva E.A., Izotova S.G., Popkov V.I. Glycine-nitrate combustion synthesis of CeFeO3-based nanocrystalline powders.Russian J. of Applied Chemistry, 2016, 89, P. 1228-1236.

22. Simagina V.I., Komova O.V., et al. Study of Copper-Iron Mixed Oxide with Cubic Spinel Structure, Synthesized by the Combustion Method.Russian J. of Applied Chemistry, 2019, 92, P. 20-30.

23. Ostroushko A.A., Russkikh O.V. Oxide material synthesis by combustion of organicinorganic Compositions. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (4), P. 476-502.

24. Khaliullin Sh.M., Zhuravlev V.D., et al. Thermal characteristics, gassing in solution combustion synthesis and conductivity of CaZrO3.Int. J. of Self-Propagating High-Temperature Synthesis, 2015, 24 (2), P. 83-88.

25. Varma A., Mukasyan A.S., Rogachev A.S., Manukyan K.V. Solution Combustion Synthesis of Nanoscale Materials. Chemical Reviews, 2016, 116, P. 14493-14586.

26. Manukyan K.V., Cross A., et al. Solution Combustion Synthesis of Nano-Crystalline Metallic Materials: Mechanistic Studies. J. of Physical Chemistry C, 2013, 117, P. 24417-24427.

27. Trusov G.V., Tarasov A.B., et al. Spray Solution Combustion Synthesis of Metallic Hollow Microspheres. J. of Physical Chemistry C, 2016, 120, P. 7165-7171.

28. Khaliullin S.M., Zhuravlev V.D., Bamburov V.G. Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Thermodynamic aspects.Int. J. of Self-Propagating High-Temperature Synthesis, 2016, 25 (3), P. 139-148.

29. Li F.T., Ran J., Jaroniec M., Qiao S.Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale, 2015, 7 (42), P. 17590-17610.

30. Saukhimov A.A., Hobosyan M.A., et al. Solution-combustion synthesis and magnetodielectric properties of nanostructured rare earth ferrites.Int. J. of Self-Propagating High-Temperature Synthesis, 2015, 24 (2), P. 63-71.

31. Sun L., Yuan G., Gao L., Yang J., Chhowalla M., Gharahcheshmeh M.H., Gleason K.K., Choi Y.S., Hong B.H., Liu Z. Chemical vapour deposition. Nature Reviews Methods Primers, 2021, 1 (1), P. 5.

32. Cai Z., Liu B., Zou X., Cheng H.M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chemical Reviews, 2018, 118, P. 6091-6133.

33. Mart´ınez L., Mayoral A., et al. Core@shell, Au@TiOx nanoparticles by gas phase synthesis. Nanoscale, 2017, 9, P. 6463-6470.

34. Deepak N., Carolan P., et al. Tunable nanoscale structural disorder in Aurivillius phase, n = 3 Bi4Ti3O12 thin films and their role in the transformation to n = 4, Bi5Ti3FeO15 phase. J. of Materials Chemistry C, 2015, 3 (22), P. 5727-5732.

35. Yau S.-T., Vekilov P.G. Quasi-planar nucleus structure in apoferritin crystallization. Nature, 2000, 406 (6795), P. 494-497.

36. Ivanov V.K., Fedorov P.P., Baranchikov A.Ye., Osiko V.V. Oriented attachment of particles: 100 years of investigations of non-classical crystal growth.Russian Chemical Reviews, 2014, 83 (12), P. 1204-1222.

37. Fedorov P., Mayakova M., et al. Preparation of ”NaREF4” phases from the sodium nitrate melt. J. of Fluorine Chemistry, 2019, 218, P. 69-75.

38. Fedorov P.P., Ivanov V.K., Osiko V.V. Basic features and crystal-growth scenarios based on the mechanism of oriented attachment growth of nanoparticles. Doklady Physics, 2015, 60 (11), P. 483-485.

39. Penn R.L., Banfield J.F. Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2. American Mineralogist, 1998, 83 (9-10), P. 1077-1082.

40. Penn R.L., Banfield J.F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science, 1998, 281, P. 969-971.

41. Fedorov P.P., Maslov V.A., et al. Flintstone as a nanocomposite material for photonics. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9 (5), P. 603-608.

42. Lin Q., Wang X., Li J., Han Y. Oriented aggregation of silver particles in gel solutions. Colloids and Surfaces A, 2018, 555, P. 161-169.

43. Lomanova N.A., Tomkovich M.V., et al. Formation of Bim+1Fem-3Ti3O3m+3 (m = 4-9) nanocrystals upon thermal decomposition of coprecipitated hydroxides.Russian J. of Inorganic Chemistry, 2021, 66 (5), P. 755-764.

44. Lomakin M.S., Proskurina O.V., et al. Hydrothermal Synthesis, Phase Formation and Crystal Chemistry of the Pyrochlore/Bi2WO6 and Pyrochlore/α-Fe2O3 Composites in the Bi2O3-Fe2O3-WO3 System. J. of Solid State Chemistry, 2020, 282, P. 121064.

45. Lomakin M.S., Proskurina O.V., Gusarov V.V. Influence of hydrothermal synthesis conditions on the composition of the pyrochlore phase in the Bi2O3-Fe2O3-WO3 system. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (2), P. 246-251.

46. Kostyukhina E.M., Kustova A.L., Kustov L.M. One-step hydrothermal microwave-assisted synthesis of LaFeO3 nanoparticles. Ceramics International, 2019, 45 (11), P. 14384-14388.

47. Denisova L.T., Molokeev M.S., et al. Synthesis, Crystal Structure, and Thermal Properties of Substituted Titanates Bi2Pr2Ti3O12 and Bi2Nd2Ti3O12. Physics of the Solid State, 2021, 63 (8), P. 1159-1164.

48. Zhuk N.A., Sekushin N.A., et al. Dielectric properties, Mo¨ssbauer study, ESR spectra of Bi2FeTa2O9.5 with pyrochlore structure. J. of Alloys and Compounds, 2022, 903, P. 163928.

49. Matsukevich I., Kulak A., et al.Comparison of different methods for Li2MTi3O8 (M - Co, Cu, Zn) synthesis. J. of Chemical Technology & Biotechnology, 2021, 97 (4), P. 1021-1026.

50. Tugova E.A. A comparative analysis of the formation processes of Ruddlesden-Popper phases in the La2O3-SrO-M2O3 (M = Al, Fe) systems. Glass Physics and Chemistry, 2009, 35 (4), P. 416-422.

51. Klyndyuk A.I., Tugova E.A., et al. Formation of solid solutions of multiferroics in the Bi2O3-Nd2O3-Fe2O3 system.Russian J. of General Chemistry, 2016, 86 (10), P. 2282-2287.

52. Karami M., Masoudpanah S.M., Rezaie H.R. Solution combustion synthesis of hierarchical porous LiFePO4 powders as cathode materials for lithium-ion batteries. Advanced Powder Technology, 2021, 32 (6), P. 1935-1942.

53. Alhaji A., Taherian M.H., Ghorbani S., Sharifnia S.A. Development of synthesis and granulation process of MgAl2O4 powder for the fabrication of transparent ceramic. Optical Materials, 2019, 98, P. 109440.

54. Zhang Y., Bu A., et al. Rapid synthesis of Y3Al5O12 powders via plasma electrolysis. Ceramics International, 2021, 47 (21), P. 30147-30155.

55. Opuchovic O., Beganskiene A., Kareiva A. Sol-gel derived Tb3Fe5O12 and Y3Fe5O12 garnets: Synthesis, phase purity, micro-structure and improved design of morphology. J. of Alloys and Compounds, 2015, 647, P. 189-197.

56. Klyndyuk A.I., Chizhova E.A., et al. Thermoelectric Multiphase Ceramics Based on Layered Calcium Cobaltite, as Synthesized Using Two-Stage Sintering. Glass Physics and Chemistry, 2020, 46, P. 562-569.

57. Tretyakov Yu.D., Lukashin A.V., Eliseev A.A. Synthesis of functional nanocomposites based on solid-phase nanoreactors.Russian Chemical Reviews, 2004, 73 (9), P. 899-921.

58. Petrosko S. H., Johnson R., White H., Mirkin C.A. Nanoreactors: small spaces, big implications in chemistry. J. of the American Chemical Society, 2016, 138, P. 7443-7445.

59. Swisher J.H., Jibril L., Petrosko S.H., Mirkin C.A. Nanoreactors for particle synthesis. Nature Reviews Materials, 2022, 7.

60. Eliseev A.A., Falaleev N.S., et al. Size-dependent structure relations between nanotube and encapsulated nanocrystal. Nano Letters, 2017, 17, P. 805-810.

61. Eliseev A.A., Kharlamova M.V., et al. Preparation and properties of single-walled nanotubes filled with inorganic compounds.Russian Chemical Reviews, 2009, 78 (9), P. 833-854.

62. Yashina L.V., Eliseev A.A., et al. Growth and Characterization of One-Dimensional SnTe Crystals within the Single-Walled Carbon Nanotube Channels. The J. of Physical Chemistry C, 2011, 115 (9), P. 3578-3586.

63. Naberezhnov A.A., Stukova E.V., et al. Effects Associated with Confined Geometry in Nanocomposites Based on Mesoporous 2D-SBA-15 and 3D-SBA-15 Matrices Containing Sodium Nitrite Nanoparticles. Technical Physics, 2019, 64 (12), P. 1866-1871.

64. Alekseeva O.A., Naberezhnov A.A., et al. Temperature range broadening of the ferroelectric phase in KNO3 nanoparticles embedded in the pores of the nanoporous Al2O3 matrix. Ferroelectrics, 2021, 574 (1), P. 8-15.

65. Bronstein L.M., Sidorov S.N., Valetsky P.M. Nanostructured polymeric systems as nanoreactors for nanoparticle formation.Russian Chemical Reviews, 2004, 73 (5), P. 501-515.

66. Maslennikova T.P., Korytkova E.N., Kuznetsova O.M., Pivovarova L.N. Thermochemical modification of Mg3Si2O5(OH)4 hydrosilicate nanotubes by silver nitrate solutions. Glass Physics and Chemistry, 2016, 42 (3). P. 288-294.

67. Maslennikova, T.P., Korytkova, E.N. Influence of synthesis of physicochemical parameters on growth of Ni3Si2O5(OH)4 nanotubes and their filling with solutions of hydroxides and chlorides of alkaline metals. Glass Physics and Chemistry,2013, 39, P. 67-72.

68. Maslennikova T.P., Gatina E.N. Modification of Mg3Si2O5(OH)4 nanotubes by magnetite nanoparticles. Glass Physics and Chemistry, 2017, 43 (3), P. 257-262.

69. Molz E., Wong Apollo P.Y., Chan M.H.W., Beamish J.R. Freezing and melting of fluids in porous glasses. Physical Review B, 1993, 48 (9), P. 5741-5750.

70. Saridakis E., Chayen N.E., Sear R.P. Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (3), P. 597-601.

71. Page A.J., Sear R.P. Heterogeneous Nucleation in and out of Pores. Physical Review Letters, 2006, 97, 065701.

72. Nanev C., Govada L., Chayen N.E. Theoretical and experimental investigation of protein crystal nucleation in pores and crevices.International Union of Crystallography, 2021, 8 (2), P. 270-280.

73. Zalineeva A., Serov A., et al. Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media. J. of the American Chemical Society, 2014, 136 (10), P. 3937-3945.

74. Kharlamova M.V., Sapoletova N.A., Eliseev A.A., Lukashin A.V. Magnetic properties of γ-iron oxide nanoparticles in a mesoporous silica matrix. J. of Experimental and Theoretical Physics Letters, 2007, 85 (9), P. 439-443.

75. Gorozhankin D.F., Eliseev A.A., et al. Synthesis and Properties of Iron Oxide Nanoparticles in the Matrix of Mesoporous Silica. Doklady Chemistry, 2004, 396 (4-6), P. 132-135.

76. Eliseev A.A., Gorozhankin D.F., et al. Preparation of strontium hexaferrite nanowires in the mesoporous silica matrix MCM-41. J. of Magnetism and Magnetic Materials, 2005, 290 (l), P. 106-109.

77. Burova L.I., Petukhov D.I., et al. Preparation and properties of ZnO nanoparticles in the mesoporous silica matrix. Superlattices and Microstructures, 2006, 39 (l-4), P. 257-266.

78. Sokolov M.R., Enakieva Y.Yu., et al.Intercalation of Porphyrin-Based SURMOF in Layered Eu(III) Hydroxide: An Approach Toward Symbimetic Hybrid Materials. Advanced Functional Materials, 2020, 30 (27), 2000681.

79. Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. Layered rare-earth hydroxides: a new family of anion-exchangeable layered inorganic materials.Russian Chemical Reviews, 2020, 89 (6), P. 629-666.

80. Takaiwa D., Hatano I., Koga K, Tanakathe H. Phase diagram of water in carbon nanotubes. Proceeding of the National Academy Sciences of the United States of America, 2008, 105 (1), P. 39-43.

81. Findenegg G.H., Ja¨hnert S., Akcakayiran D., Schreiber A. Freezing and melting of water confined in silica nanopores. Chem. Phys. Chem., 2008, 9 (18), P. 2651-2659.

82. Ghernysheva M.V., Kiseleva E.A., et al. Synthesis and invenstigation of of nanocrystals inside channels of single-walled carbon nanotubes.Int. Sci. J. for Alternative Energy and Ecology, 2008, 57 (1), P. 22-29. (In Russian)

83. Kharlamova M.V., Kramberger C. Applications of Filled Single-Walled Carbon Nanotubes: Progress, Challenges, and Perspectives. Nanomaterials, 2021, 11 (11), 2863.

84. Rempel A.A., Valeeva A.A., Vokhmintsev A.S., Weinstein I.A. Titanium dioxide nanotubes: synthesis, structure, properties and applications.Russian Chemical Reviews, 2021, 90 (11). P. 1397-1414.

85. Latysheva E.N., Pirozerskii A.L., et al. Polymorphism of Ga-In Alloys in Nanoconfinement Conditions. Physics of the Solid State, 2015, 57, P. 131-135.

86. Riboni F., Nguyen N.T., So S., Schmuki P. Aligned metal oxide nanotube arrays: key-aspects of anodic TiO2 nanotube formation and properties. Nanoscale Horizons, 2016, 1 (6), P. 445-466.

87. Li G., Fu C., et al. Giant Raman Response to the Encapsulation of Sulfur in Narrow Diameter Single-Walled Carbon Nanotubes. J. of the American Chemical Society, 2016, 138 (1), P. 40-43.

88. Monet G., Paineau E., et al. Solid wetting-layers in inorganic nano-reactors: the water in imogolite nanotube case. Nanoscale Advances, 2020, 2 (5), P. 1869-1877.

89. Vafakish B., Wilson, L.D. A Review on Recent Progress of Glycan-Based Surfactant Micelles as Nanoreactor Systems for Chemical Synthesis Applications. Polysaccharides, 2021, 2 (1), P. 168-186.

90. Porras M., Mart´ınez A., et al. Ceramic particles obtained using W/O nano-emulsions as reaction media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, P. 189-194.

91. Hada R. A Novel Synthesis Process for Making Nickel Oxide Nanoparticles.Int. Research J. of Pure and Applied Chemistry, 2013, 3, P. 111-117.

92. Al’myasheva O.V., Gusarov V.V. Nucleation in media in which nanoparticles of another phase are distributed. Doklady Physical Chemistry, 2009, 424, P. 43-45.

93. He Z., Alexandridis P. Nanoparticles in ionic liquids: interactions and organization. Physical Chemistry Chemical Physics, 2015, 17, P. 18238-18261.

94. Hammond O., Mudring A.-V. Ionic Liquids and Deep Eutectics as a Transformative Platform for the Synthesis of Nanomaterials. Chemical Communications, 2022, 58, P. 3865-3892.

95. Sergievskaya A., Chauvin A., Konstantinidis S. Sputtering onto liquids: a critical review. Beilstein J. of Nanotechnology, 2022, 13, P. 10-53.

96. Kol’tsov S.I., Aleskovskii V.B. Effect of degree of dehydration of silica gel on mechanism of hydrolysis of adsorbed titanium tetrachloride.Russian J. of Physical Chemistry, 1968, 42 (5), P. 630-632.

97. Aleskovskii V.B. Chemistry and technology of solids. J. of Applied Chemistry of the USSR, 1974, 47 (10), P. 2207-2217.

98. Malygin A.A. Molecular Layering Nanotechnology. Nanotechnologies in Russia (Rossiiskie Nanotekhnologii), 2007, 2 (3-4). P. 87-100. (In Russian)

99. Malygin A.A., Drozd V.E., et al. Aleskovskii’s “Framework” Hypothesis to the Method of Molecular Layering/Atomic Layer Deposition. Chemical Vapor Deposition, 2015, 21, P. 216-240.

100. Sosnov E.A., Malkov A.A., Malygin A.A. Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes (a Review): I. History of the Development of the Molecular Layering Method.Russian J. of Applied Chemistry, 2021, 94 (8), P. 1022-1037.

101. Sosnov E.A., Malkov A.A., Malygin A.A. Nanotechnology of Molecular Layering in Production of Inorganic and Hybrid Materials for Various Functional Purposes: II. Molecular Layering Technology and Prospects for Its Commercialization and Development in the XXI Century.Russian J. of Applied Chemistry, 2021, 94 (9), P. 1189-1215.

102. Malygin A.A. Molecular Layering Technology and Some of its Applications.Russian J. of Applied Chemistry, 1996, 69 (10) P. 1419-1426.

103. Goodman C.H.L., Pessa M.V. Atomic layer epitaxy. J. of Applied Physics, 1986, 60, R65.

104. George S.M. Atomic layer deposition: An overview. Chemical Review, 2010, 110 (1), P. 111-131.

105. Gusarov V.V., Malkov A.A., Ishutina Zh.N., Malygin A.A. Phase formation in a nanosize silicon oxide film on the surface of aluminum oxide. Technical Physics Letters, 1998, 24 (1), P. 1-3.

106. Gusarov V.V., Ishutina Z.N., Malkov A.A., Malygin A.A. Peculiarities of the solid-phase chemical reaction in formation of mullite in the nanosize film composition. Doklady Akademii Nauk, 1997, 357 (2), P. 203-205. (In Russian)

107. Gusarov V.V., Malkov A.A., Malygin A.A., Suvorov S.A. Generation of aluminum titanate in compositions with high-level of space and structural conjugation of components. Zhurnal Obshchei Khimii, 1994, 64 (4), P. 554-557. (In Russian)

108. Smirnova Zh.N., Gusarov V.V., et al. High-Speed Synthesis of Mullite. Zhurnal Obshchei Khimii, 1995, 65 (2), P. 199-204. (In Russian)

109. Ramazanov S., Sobola D.S., et al. Surface Modification and Enhancement of Ferromagnetism in BiFeO3 Nanofilms Deposited on HOPG. Nanomaterials, 2020, 10 (10), P. 1990.

110. Orudzhev F., Ramazanov S., et al. Atomic Layer Deposition of Mixed-Layered Aurivillius Phase on TiO2 Nanotubes: Synthesis, Characterization and Photoelectrocatalytic Properties. Nanomaterials, 2020, 10 (11), P. 2183.

111. Koshtyal Y., Nazarov D., et al. Atomic Layer Deposition of NiO to Produce Active Material for Thin-Film Lithium-Ion Batteries. Coatings, 2019, 9 (5), P. 301.

112. Lukashin A.V., Eliseev A.A., et al. Synthesis of PbS/S Nanostructures through. Doklady Chemistry, 2002, 383 (4-6), P. 93-96.

113. Lukashin A.V., Vertegel A.A., et al. Chemical Design of Magnetic Nanocomposites Based on Layered Double Hydroxides. J. of Nanoparticle Research, 2003, 5, P. 455-464.

114. Nikiforov M.P., Chernysheva M.V., et al. Synthesis of Iron-Containing Oxide Nanocomposites from LDH Precursors. Doklady Chemistry, 2003, 391 (1-3). P. 173-176.

115. Lukashin A.V., Vyacheslavov A.S., Vertegel A.A., Tret’yakov Yu.D. Synthesis of PbS/LDH Nanocomposites with the Use of the Method of Reversible Delamination of LDHs. Doklady Chemistry, 2002, 385 (1-3), P. 178-181.

116. Parida K., Satpathy M., Mohapatra L. Incorporation of Fe3+ into Mg/Al layered double hydroxide framework: Effects on textural properties and photocatalytic activity for H2 generation. J. of Materials Chemistry, 2012, 22, P. 7350-7357.

117. Boumeriame H., Da Silva E.S., et al. Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting. J. of Energy Chemistry, 2022, 64, P. 406-431.

118. Voropaeva D.Yu., Novikova S.A., Yaroslavtsev A.B. Polymer electrolytes for metal-ion batteries.Russian Chemical Reviews, 2020, 89 (10), P. 1132-1155.

119. Ushakov N.M., Yurkov G.Yu., et al. Nanocomposites based on the cerium oxide nanoparticles and polyethylene matrix: Syntheses and properties. Acta Materialia, 2008, 56 (10), P. 2336-2343.

120. De Martino M.T., Abdelmohsen L.K.E.A., Rutjes F.P.J.T., van Hest J.C.M. Nanoreactors for green catalysis. Beilstein J. of Organic Chemistry, 2018, 14, P. 716-733.

121. Vriezema D.M., Aragone`s M.C., et al. Self-Assembled Nanoreactors. Chemical Reviews, 2005, 105, P. 1445-1489.

122. Syah R., Zahar M., Kianfar E. Nanoreactors: properties, applications and characterization.Int. J. of Chemical Reactor Engineering, 2021, 19 (10), P. 981-1007.

123. Kaur M., Singh B. A Brief Review of Construction, Working and Applications of Nanoreactors. Chemical Sciences J., 2018, 09 (03), 1000192.

124. Volodin A.M., Bedilo A.F., Vedyagin A.A., Stoyanovskii V.O. Synthesis of Nanocrystalline Oxide Ceramic Materials: a Carbon Nanoreactor Concept. JOJ Material Science, 2017, 3 (4), P. 555617.

125. Ryabochkina P.A., Egorysheva A.V., et al. Synthesis and photoluminescence properties of novel LaGa0.5Sb1.5O6: Eu3+, Dy3+, Tb3+ and BiGeSbO6: Eu3+, Dy3+, Tb3+ phosphors. J. of Alloys and Compounds, 2021, 886, P. 161175.

126. Proskurina O.V., Tomkovich M.V., et al. Formation of Nanocrystalline BiFeO3 under Hydrothermal Conditions.Russian J. of General Chemistry, 2017, 87 (11), P. 2507-2515.

127. Wang C., Cui Z., et al. Theoretical and experimental studies on the size- and morphology-dependent thermodynamics of nanoparticle electrodes. Thermochimica Acta, 2022, 708, P. 179140.

128. Bugrov A.N., Almjasheva O.V. Effect of hydrothermal synthesis conditions on the morphology of ZrO2 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics, 2013, 4 (6), P. 810-815.

129. Gopinath S., Mayakannan M., Vetrivel S. Structural, optical, morphological properties of silver doped cobalt oxide nanoparticles by microwave irradiation method. Ceramics International, 2022, 48 (5), P. 6103-6115.

130. Svinolupova A.S., Lomakin M.S., Kirillova S.A., Almjasheva O.V. Formation of Bi2WO6 nanocrystals under conditions of hydrothermal treatment. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11 (3), P. 338-344.

131. Sukhdev A., Challa M., et al. Synthesis, phase transformation, and morphology of hausmannite Mn3O4 nanoparticles: photocatalytic and antibacterial investigations. Heliyon, 2020, 6 (1), P. e03245.

132. Rozenberg B.A., Tenne R. Polymer-assisted fabrication of nanoparticles and nanocomposites. Progress in Polymer Science, 2008, 33 (1), P. 40-112.

133. Kostyukhin E.M., Kustov L.M. Microwave-assisted synthesis of magnetite nanoparticles possessing superior magnetic properties. Mendeleev Communications, 2018, 28 (5), P. 559-561.

134. Golyeva E.V., Kolesnikov I.E., et al. Effect of synthesis conditions on structural, morphological and luminescence properties of MgAl2O4:Eu3+ nanopowders. J. of Luminescence, 2018, 194, P. 387-393.

135. Lomanova N.A., Tomkovich M.V., Osipov A.V., Ugolkov V.L. Synthesis of Nanocrystalline Materials Based on the Bi2O3-TiO2 System.Russian J. of General Chemistry, 2019, 89, P. 2075-2081.

136. Bugrov A.N., Smyslov R.Yu., et al. Phosphors with different morphology, formed under hydrothermal conditions on the basis of ZrO2:Eu3+ nanocrystallites. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (6), P. 654-665.

137. Kurdyukov D.A., Feoktistov N.A., et al. Template Synthesis of Monodisperse Submicrometer Spherical Nanoporous Silicon Particles. Semiconductors, 2019, 53, P. 1048-1053.

138. Almjasheva O.V. Formation and structural transformations of nanoparticles in the TiO2-H2O system. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (6), P. 1031-1049.

139. Popkov V.I., Almjasheva O.V., et al. Crystallization Behavior and Morphological Features of YFeO3 Nanocrystallites Obtained by Glycine-Nitrate Combustion. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (6), P. 866-874.

140. Tajiri T., Terashita N., et al. Size dependences of crystal structure and magnetic properties of DyMnO3 nanoparticles. J. of Magnetism and Magnetic Materials, 2013, 345, P. 288-293.

141. Lomanova N.A., Panchuk V.V., et al. Bismuth orthoferrite nanocrystals: magnetic characteristics and size effects. Ferroelectrics, 2020, 569 (1), P. 240-250.

142. Popkov V.I., Almjasheva O.V., et al. Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. J. of Materials Science: Materials in Electronics, 2017, 28 (10), P. 7163-7170.

143. Manukyan A., Elsukova A., et al. Structure and size dependence of the magnetic properties of Ni@C nanocomposites. J. of Magnetism and Magnetic Materials, 2018, 467, P. 150-159.

144. Tian Z., Zhu C., et al. Size dependence of structure and magnetic properties of CoCr2O4 nanoparticles synthesized by hydrothermal technique. J. of Magnetism and Magnetic Materials, 2015, 377, P. 176-182.

145. Farbod M., Dehbidi V.K., Shoushtari M.Z. Size dependence of optical and magnetic properties of nickel oxide nanoparticles fabricated by electric arc discharge method. Ceramics International, 2017, 43 (16), P. 13670-13676.

146. Murakami N., Kawakami S., Tsubota T., Ohno T. Dependence of photocatalytic activity on particle size of a shape-controlled anatase titanium(IV) oxide nanocrystal. J. of Molecular Catalysis A: Chemical, 2012, 358, P. 106-111.

147. Li L., Gao H., et al.Comparative investigation on synthesis, morphological tailoring and photocatalytic activities of Bi2O2CO3 nanostructures. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2022, 644, P. 128758.

148. Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F. C60: Buckminsterfullerene. Nature, 1985, 318, P. 162-163.

149. Kratschmer W., Lamb L.D., Fostiropoulos K., Huffman D.R. Solid C60: a new form of carbon. Nature, 1990, 347 (6291), P. 354-358.

150. Dunk P., Niwa H., et al. Large fullerenes in mass spectra. Molecular Physics, 2015, 113 (15), P. 1-3.

151. Mu¨ller A., Shah S.Q.N., et al. Archimedean Synthesis and Magic Numbers: “Sizing” Giant Molybdenum-Oxide-Based Molecular Spheres of the Keplerate Type. Angewandte Chemie International Edition, 1999, 38 (21), P. 3238-3241.

152. Mu¨ller A., Krickemeyer E., et al. Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide. Angewandte Chemie International Edition, 1998, 37 (24), P. 3359-3363.

153. Ostroushko A.A., Gagarin I.D., Danilova I.G., Gette I.F. The use of nanocluster polyoxometalates in the bioactive substance delivery systems. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (3), P. 318-349.

154. Mu¨ller A., Gouzerh P. From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry. Chemical Society Reviews, 2012, 41 (22), P. 7431-7463.

155. Awada M., Floquet S., et al. Synthesis and Characterizations of Keplerate Nanocapsules Incorporating L- and D-Tartrate Ligands. J. of Cluster Science, 2017, 28 (2), P. 799-812.

156. Ostroushko A.A., Tonkushina M.O., et al. Stability of the Mo72Fe30 polyoxometalate buckyball in solution.Russian J. of Inorganic Chemistry, 2012, 57 (9), P. 1210-1213.

157. Qiao Z.-A., Zhang P., et al. Lab-in-a-Shell: Encapsulating Metal Clusters for Size Sieving Catalysis. J. of the American Chemical Society, 2014, 136 (32), P. 11260-11263.

158. Hervieu M., Melle`ne B., et al. The route to fullerenoid oxides. Nature Materials, 2004, 3, P. 269-273.

159. Lebedev O.I., Bals S., et al. Mixed (Sr1-xCax)33Bi24Al48O141 fullerenoids: the defect structure analysed by (S)TEM techniques.Int. J. of Materials Research, 2006, 97 (7), P. 978-984.

160. Boudin S., Mellenne B., et al. New Aluminate with a Tetrahedral Structure Closely Related to the C84 Fullerene. Inorganic Chemistry, 2004, 43 (19), P. 5954-5960.

161. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354, P. 56-58.

162. Venkatesan S., Visvalingam B., et al. Effect of chemical vapor deposition parameters on the diameter of multi-walled carbon nanotubes.International Nano Letters, 2018, 8 (4), P. 297-308.

163. Serra M., Arenal R., Tenne R. An overview of the recent advances in inorganic nanotubes. Nanoscale, 2019, 11 (17), P. 8073-8090.

164. Zhang Y.J., Ideue T., et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature, 2019, 570 (7761), P. 349-353.

165. Qin F., Shi W., et al. Superconductivity in a chiral nanotube. Nature Communications, 2017, 8 (1), P. 14465.

166. Panchakarla L.S., Radovsky G., et al. Nanotubes from Misfit Layered Compounds: A New Family of Materials with Low Dimensionality. J. of Physical Chemistry Letters, 2014, 5 (21), P. 3724-3736.

167. Polyakov A.Yu., Zak A., et al. Nanocomposites based on tubular and onion nanostructures of molybdenum and tungsten disulfides: inorganic design, functional properties and application.Russian Chemical Reviews, 2018, 87, P. 251-271.

168. Lourenco M.P., de Oliveira C., et al. Structural, Electronic, and Mechanical Properties of Single-Walled Chrysotile Nanotube Models. J. of Physical Chemistry C, 2012, 116, P. 9405-9411.

169. Guimara¨es L., Enyashin, A.N., Seifert G., Duarte H.A. Structural, Electronic, and Mechanical Properties of Single-Walled Halloysite Nanotube Models. J. of Physical Chemistry C, 2010, 114, P. 11358-11363.

170. Krasilin A.A., Gusarov V.V. Energy Model of Bilayer Nanoplate Scrolling: Formation of Chrysotile Nanoscroll.Russian J. of General Chemistry, 2015, 85, P. 2238-2241.

171. Demichelis R., De La Pierre M., et al. Serpentine Polymorphism: A Quantitative Insight from First-Principles Calculations. Cryst. Eng.Comm., 2016, 18, P. 4412-4419.

172. Krasilin A.A., Gusarov V.V. Energy model of radial growth of a nanotubular crystal. Technical Physics Letters, 2016, 42 (1), P. 55-58.

173. Krasilin A.A., Nevedomsky V.N., Gusarov V.V.Comparative Energy Modeling of Multi-Walled Mg3Si2O5(OH)4 and Ni3Si2O5(OH)4 Nanoscrolls Growth. J. of Physical Chemistry C, 2017, 121 (22), P. 12495-12502.

174. Krasilin A.A., Suprun A.M., Nevedomsky V.N., Gusarov V.V. Formation of conical (Mg,Ni)3Si2O5(OH)4 nanoscrolls. Doklady Physical Chemistry, 2015, 460 (2), P. 42-44.

175. Krasilin A.A., Gusarov V.V. Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (5), P. 620-627.

176. Proskurina O.V., Sivtsov E.V., et al. Formation of rhabdophane-structured lanthanum orthophosphate nanoparticles in an impinging-jets microreactor and rheological properties of sols based on them. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (2), P. 206-214.

177. Avdeeva A.V., Zang X., Muradova A.G., Yurtov E.V. Formation of Zinc-Oxide Nanorods by the Precipitation Method. Semiconductors, 2017, 51 (13), P. 1724-1727.

178. Zaien M., Ahmed N.M., Hassan Z. Growth of cadmium oxide nanorods by vapor transport. Chalcogenide Letters, 2012, 9 (3), P. 115-119.

179. Tokunaga T., Kawamoto T., et al. Growth and structure analysis of tungsten oxide nanorods using environmental TEM. Nanoscale Research Letters, 2012, 7 (1), P. 85.

180. Ma M., Zhang Y., Guo Z., Gu N. Facile synthesis of ultrathin magnetic iron oxide nanoplates by Schikorr reaction. Nanoscale Research Letters, 2013, 8 (1), P. 16.

181. Nguyen V.T., Nguyen H.S., et al. Tungsten Oxide Nanoplates: Facile Synthesis, Controllable Oxygen Deficiency and Photocatalytic Activity.Communications in Physics, 2020, 30 (4), P. 319.

182. Krasilin A.A. Energy modeling of competition between tubular and platy morphologies of chrysotile and halloysite layers. Clays and Clay Minerals, 2020, 68, P. 436-445.

183. Krasilin A.A. The influence of edge specific surface energy on the direction of hydrosilicate layers scrolling. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12 (5), P. 623-629.

184. Antonov N.M., Popov I.Y., Gusarov V.V. Model of spinodal decomposition of phases under hyperbolic diffusion. Physics of the Solid State, 1999, 41 (5), P. 824-826.

185. Ja´ger C., Toma´n J.J., Erde´lyi Z. Nanoparticle formation by spinodal decomposition in ion implanted samples. J. of Alloys and Compounds, 2022, P. 164781.

186. Ahmadi R., Masoudi A., Hamid Reza Madaah Hosseini, Gu N. Kinetics of magnetite nanoparticles formation in a one step low temperature hydrothermal process. Ceramics International, 2013, 39 (5), P. 4999-5005.

187. Tyrsted C., Becker J., et al. In-situ synchrotron radiation study of formation and growth of crystalline CexZr1-xO2 nanoparticles synthesized in supercritical water. Chemistry of Materials, 2010, 22 (5), P. 1814-1820.

188. Ivanov V.K., Polezhaeva O.S., et al. Microwave-hydrothermal synthesis of stable nanocrystalline ceria sols for biomedical uses.Russian J. of Inorganic Chemistry, 2010, 55 (1), P. 1-5.

189. Kuznetsova V.A., Almjasheva O.V., Gusarov V.V. Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions. Glass Physics and Chemistry, 2009, 35 (2), P. 205-209.

190. Liu L., Wang S., et al. Supercritical hydrothermal synthesis of nano-ZrO2: Influence of technological parameters and mechanism. J. of Alloys and Compounds, 2022, 898, P. 162878.

191. Bachina A.K., Almjasheva O.V., et al. Heat-stimulated crystallization and phase transformation of titania nanoparticles. J. of Crystal Growth, 2021, 576, P. 126371.

192. Escobedo-Morales A., Te´llez-Flores D., et al. Green method for producing hierarchically assembled pristine porous ZnO nanoparticles with narrow particle size distribution. Materials Chemistry and Physics, 2015, 151, P. 282-287.

193. Ngoi K.H., Wong J.C., et al. Morphological structure details, size distributions and magnetic properties of iron oxide nanoparticles. J. of Industrial and Engineering Chemistry, 2021, 95, P. 37-50.

194. Rusanov A.I. Fazovye ravnovesiya i poverkhnostnye yavleniya (Phase Equilibria and Surface Phenomena), Leningrad: Khimiya, 1967, 388 p. (In Russian)

195. Rusanov A.I. Phasengleichgewichte und Grenzfla¨chenerscheinungen. Berlin: Akademie Verlag, 1978, 465 p.

196. Tolstoy V.P. Fundamentals of Ion Layering Nanotechnology. Tutorial. SPbU, SPb, 2020, 142 p. (In Russian)

197. Ermakov S.S., Nikolaev K.G., Tolstoy V.P. Novel electrochemical sensors with electrodes based on multilayers fabricated by layer-by-layer synthesis and their analytical potential.Russian Chemical Reviews, 2016, 85 (8), P. 880-900.

198. Tolstoi V.P. New routes for the synthesis of nanocomposite layers of inorganic compounds by the layer-by-layer scheme.Russian J. of General Chemistry, 2009, 79 (12), P. 2578-2583.

199. Mateos-Maroto A., Abelenda-Nu´nez I., et al. Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers (Basel), 2021, 13 (8), P. 1221.

200. Richardson J.J., Bjo¨rnmalm M., Caruso F. Technology-driven layer-by-layer assembly of nanofilms. Science, 2015, 348 (6233), P. 411.

201. Ahvenniemi E., Akbashev A.R., et al. Review Article: Recommended reading list of early publications on atomic layer deposition-Outcome of the “Virtual Project on the History of ALD”. J. of Vacuum Science and Technology A, 2017, 35 (1), P. 010801.

202. Method of manganese dioxide synthesis, Patent. 1396600, Russia: 4 C 03 17/25 Tolstoy V.P., Bogdanova L.B., Mitykova G.V. N 4010248/31-33, Prior. 01.06.1986. Issue N 3, p. 114, 1988.

203. Popkov V.I., Tolstoy V.P., Nevedomskiy V.N. Peroxide route to the synthesis of ultrafine CeO2-Fe2O3 nanocomposite via successive ionic layer deposition. Heliyon, 2019, 5 (3), P. e01443.

204. Tolstoi V.P. Synthesis of thin-layer structures by the ionic layer deposition method.Russian Chemical Reviews, 1993, 62 (3), P. 237-242.

205. Tolstoy V.P., Altangerel B. A new “fluoride” synthesis route for successive ionic layer deposition of the ZnxZr(OH)y Fz·nH2O nanolayers. Materials Letters, 2007, 53 (1), P. 123-125.

206. Li Z., Xiong S.,et al. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays. Scientific Reports, 2016, P. 19754.

207. Popkov V.I., Tolstoy V.P. Controllable wettability tuning of the stainless steel surface through successive ionic layer deposition of Zn-Fe layered double hydroxysulfate. Surface and Coatings Technology, 2021, 409, P. 126914.

208. Li X., Chen F., et al. Layer-by-layer synthesis of hollow spherical CeO2 templated by carbon spheres. J. of Porous Materials, 2010, 17, P. 297-303.

209. Shekhah O. Layer-by-Layer Method for the Synthesis and Growth of Surface Mounted Metal-Organic Frameworks (SURMOFs). Materials, 2010, 3, P. 1302-1315.

210. Khajavian R., Ghani K. Fabrication of [Cu2(bdc)2(bpy)]n thin films using coordination modulation-assisted layer-by-layer growth. Cryst. Eng.Comm., 2018, 20, P. 1546-1552.

211. Galkin V.I., Sayakhov R.D., Cherkasov R.A. Steric effects: the problem of their quantitative assessment and manifestation in the reactivity of organoelement compounds.Russian Chemical Reviews, 1991, 60 (8), P. 815-829.

212. Teychene´ S., Rodr´ıguez-Ruiz I., Ramamoorthy R.K. Reactive crystallization: From mixing to control of kinetics by additives. Current Opinion in Colloid & Interface Science, 2020, 46, P. 1-19.

213. Johnson B.K., Prud’homme R.K. Chemical Processing and Micromixing in Confined Impinging Jets. AIChE J., 2003, 49 (9), P. 2264-2282.

214. Erkoc E., Fonte C.P., et al. Numerical and experimental modeling of mixing of impinging jets radially injected into crossflow. Chemical Engineering Research and Design, 2016, 106, P. 74-91.

215. Abiev R.Sh., Almjasheva O.V., Popkov V.I., Proskurina O.V. Microreactor Synthesis of Nanosized Particles: The Role of Micromixing, Aggregation, and Separation Processes in Heterogeneous Nucleation. Chemical Engineering Research and Design, 2022, 178, P. 73-94.

216. Abiev R.S., Almyasheva O.V., Izotova S.G., Gusarov V.V. Synthesis of cobalt ferrite nanoparticles by means of confined impinging-jets reactors. J. of Chemical Technology and Applications, 2017, 1 (1), P. 7.

217. Maki T., Takeda S., Muranaka Y., Mae K. Silver Nanoparticle Synthesis Using an Inkjet Mixing System. Frontiers in Chemical Engineering, 2021, 3, P. 742322.

218. Wu Y., Lu J., Yang Q. A Control System Design for Nanoparticle Manufacturing by Using Impinging-jet Micromixers. Advanced Materials Research, 2012, 528, P. 3-9.

219. Rivallin M., Benmami M., Kanaev A., Gaunand A. Sol-Gel reactor with rapid micromixing: modelling and measurements of titanium oxide nano-particle growth. Chemical Engineering Research and Design, 2005, 83, P. 67-74.

220. Abiev R.S. Impinging-Jets Micromixers and Microreactors: State of the Art and Prospects for Use in the Chemical Technology of Nanomaterials (Review). Theoretical Foundations of Chemical Engineering, 2020, 54 (6), P. 1131-1147.

221. Abiev R.S., Proskurina O.V., Enikeeva M.O., Gusarov V.V. Effect of Hydrodynamic Conditions in an Impinging-Jet Microreactor on the Formation of Nanoparticles Based on Complex Oxides. Theoretical Foundations of Chemical Engineering, 2021, 55 (1), P. 12-29.

222. Zhao C.-X., He L., Qiao S.Z., Middelberg A.P.J. Nanoparticle synthesis in microreactors. Chemical Engineering Science, 2011, 66 (7), P. 1463-1479.

223. Barashok K.I., Panchuk V.V., et al. Formation of cobalt ferrite nanopowders in an impinging-jets microreactor. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12 (3), P. 303-310.

224. Zdravkov A.V., Kudryashova Y.S., Abiev R.S. Synthesis of Titanium Oxide Doped with Neodymium Oxide in a Confined Impinging-Jets Reactor.Russian J. of General Chemistry, 2020, 90 (9), P. 1677-1680.

225. Kudryashova Y.S., Zdravkov A.V., Ugolkov V.L., Abiev R.S. Preparation of Photocatalizers Based on Titanium Dioxide Synthesized Using a Microreactor with Colliding Jets. Glass Physics and Chemistry, 2020, 46 (4), P. 335-340.

226. Abiev R.Sh., Sirotkin A.A. Influence of Hydrodynamic Conditions on Micromixing in Microreactors with Free Impinging Jets. Fluids, 2020, 5 (4), P. 179.

227. Ravi Kumar D.V., Prasad B.L.V., Kulkarni A.A. Impinging Jet Micromixer for Flow Synthesis of Nanocrystalline MgO: Role of Mixing/Impingement Zone. J. of Industrial and Engineering Chemistry, 2013, 52, P. 17376.

228. Proskurina O.V., Nogovitsin I.V., et al. Formation of BiFeO3 Nanoparticles Using Impinging Jets Microreactor.Russian J. of General Chemistry, 2018, 88 (10), P. 2139-2143.

229. Kudryashova Y.S., Zdravkov A.V., Abiev R.S. Synthesis of Yttrium-Aluminum Garnet Using a Microreactor with Impinging Jets. Glass Physics and Chemistry, 2021, 47 (3), P. 260-264.

230. Sokolova A.N., Proskurina O.V., Danilovich D.P., Gusarov V.V. Photocatalytic properties of composites based on Y1-xBixFeO3 (0 ≤ x ≤ 0.15) nanocrystalline solid solutions with a hexagonal structure. Nanosystems: Physics, Chemistry, Mathematics, 2022, 13 (1), P. 87-95.

231. Lomakin M.S., Proskurina O.V., et al. Crystal structure and optical properties of the Bi-Fe-W-O pyrochlore phase synthesized via a hydrothermal method. J. of Alloys and Compounds, 2022, 889 (5), P. 161598.

232. Vo Q.M., Mittova V.O., et al. Strontium doping as a means of influencing the characteristics of neodymium orthoferrite nanocrystals synthesized by co-precipitation method. J. of Materials Science: Materials in Electronics, 2021, 32, P. 26944-26954.

233. Gao T., Chen Z., et al. A review: Preparation of bismuth ferrite nanoparticles and its applications in visible-light induced photocatalyses. Reviews on Advanced Materials Science, 2012, 40 (2), P. 97-109.

234. Proskurina O.V., Abiev R.S.,et al. Formation of nanocrystalline BiFeO3 during heat treatment of hydroxides co-precipitated in an impinging-jets microreactor. Chemical Engineering and Processing - Process Intensification, 2019, 143, P. 107598.

235. Proskurina O.V., Sokolova A.N., et al. Role of Hydroxide Precipitation Conditions in the Formation of Nanocrystalline BiFeO3.Russian J. of Inorganic Chemistry, 2021, 66 (2), P. 163-169.

236. Chang Chien S.-W., Ng D.-Q., et al. Investigating the effects of various synthesis routes on morphological, optical, photoelectrochemical and photocatalytic properties of single-phase perovskite BiFeO3. J. of Physics and Chemistry of Solids, 2022, 160, P. 110342.

237. Che D., Zhu X., et al. A facile aqueous strategy for the synthesis of high-brightness LaPO4: Eu nanocrystals via controlling the nucleation and growth process. J. of Luminescence, 2014, 153, P. 369-374.

238. Nightingale A.M., de Mello J.C. Segmented Flow Reactors for Nanocrystal Synthesis. Advanced Materials, 2013, 25, P. 1813-1821.

239. Kawase M., Suzuki T., Miura K. Growth mechanism of lanthanum phosphate particles by continuous precipitation. Chemical Engineering Science, 2007, 62, P. 4875-4879.

240. Kawase M., Miura K. Fine particle synthesis by continuous precipitation using a tubular reactor. Advanced Powder Technology, 2007, 18 (6), P. 725-738.

241. Abiev R.Sh., Zdravkov A.V., et al. Synthesis of Calcium Fluoride Nanoparticles in a Microreactor with Intensely Swirling Flows.Russian J. of Inorganic Chemistry, 2021, 66 (7), P. 1047-1052.

242. Almjasheva O.V., Krasilin A.A., Gusarov V.V. Formation mechanism of core-shell nanocrystals obtained via dehydration of coprecipitated hydroxides at hydrothermal conditions. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9 (4), P. 568-572.

243. Smirnov A.V., Fedorov B.A., et al. Core-shell nanoparticles forming in the ZrO2-Gd2O3-H2O system under hydrothermal conditions. Doklady Physical Chemistry, 2014, 456 (1), P. 71-73.

244. Almjasheva O.V., Smirnov A.V., et al. Structural features of ZrO2-Y2O3 and ZrO2-Gd2O3 nanoparticles formed under hydrothermal conditions.Russian J. of General Chemistry, 2014, 84 (5), P. 804-809.

245. Malygin A.A., Malkov A.A., Sosnov A.A. Structural-dimensional effects and their application in the “core-nanoshell” systems synthesized by the molecular layering.Russian Chemical Bulletin, 2017, 66, P. 1939-1962.

246. Patil K.C., Aruna S.T., Mimani T.Combustion synthesis: an update. Current Opinion in Solid State and Materials Science, 2002, 6 (6), P. 507-512.

247. Merzhanov A.G.Combustion and explosion processes in physical chemistry and technology of inorganic materials.Russian Chemical Reviews, 2003, 72 (4), P. 323-345.

248. Sytschev A.E., Merzhanov A.G. Self-propagating high-temperature synthesis of nanomaterials.Russian Chemical Reviews, 2004, 73 (2), P. 157-170.

249. Deshpande K., Mukasyan A., Varma A. Direct synthesis of iron oxide nanopowders by the combustion approach: Reaction mechanism and properties. Chemistry of Materials, 2004, 16 (24), P. 4896-4904.

250. Mukasyan A.S., Epstein P., Dinka P. Solution combustion synthesis of nanomaterials. Proceedings of the Combustion Institute, 2007, 31, P. 1789-1795.

251. Aruna S.T., Mukasyan A.S.Combustion synthesis and nanomaterials. Current Opinion in Solid State and Materials Science, 2008, 12 (3-4), P. 44-50.

252. Martinson K.D., Kondrashkova I.S., Popkov V.I. Synthesis of EuFeO3 nanocrystals by glycine-nitrate combustion method.Russian J. of Applied Chemistry, 2017, 90, P. 1214-1218.

253. Lomanova N.A., Tomkovich M.V., et al. Formation of Bi1-xCaxFeO3-δ Nanocrystals via Glycine-Nitrate Combustion.Russian J. of General Chemistry, 2019, 89, P. 1843-1850.

254. Tugova E.A., Karpov O.N. Glycine-nitrate combustion engineering of neodymium cobaltite nanocrystals. Rare Metals, 2021, 40, P. 1778-1784.

255. Martinson K.D., Ivanov V.A., et al. Facile combustion synthesis of TbFeO3 nanocrystals with hexagonal and orthorhombic structure. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10 (6), P. 694-700.

256. Martinson K.D., Panteleev I.B., Shevchik A.P., Popkov V.I. Effect of the Red/Ox ratio on the structure and magnetic behavior of Li0.5Fe2.5O4 nanocrystals synthesized by solution combustion approach. Letters on Materials, 2019, 9 (4), P. 475-479.

257. Tretyakov Y.D., Oleinikov N.N., et al. Self-organization in physicovhemical systems: On the path to creating novel materials. Inorganic Materials, 1994, 30 (3), P. 277-290.

258. Noyes R.M. Gas-Evolution Oscillators. 4. Characteristics of the Steady State for Gas Evolution. J. of Physical Chemistry, 1984, 88, P. 2827-2833.

259. Yang J., Sasaki T. Synthesis of CoOOH Hierarchically Hollow Spheres by Nanorod Self-Assembly through Bubble Templating. Chemistry of Materials, 2008, 20 (5), P. 2049-2056.

260. Morgan J.S. The Periodic Ecolution of Carbon Monoxide. J. of the Chemical Society, Transaction, 1916, 109, P. 274-283.

261. Duyen P.T.H., Nguyen A.T. Optical and magnetic properties of orthoferrite NdFeO3 nanomaterials synthesized by simple co-precipitation method. Condensed Matter and Interphases, 2021, 23 (4), P. 600-606.

262. Rotermel M.V., Samigullina R.F., Ivanova I.V., Krasnenko T.I. Synthesis of the Zn1.9Cu0.1SiO4 pigment via the sol-gel and coprecipitation methods. J. of Sol-Gel Science and Technology, 2021, 100, P. 404-413.

263. Kiseleva T.Yu., Uyangaa E., et al. Strucute, magnetic, and magnetocaloric properties of submicronic yttrium iron garnet particles. J. of Structural Chemistry, 2022, 63, P. 26-36.

264. Matrosova A.S., Kuz’menko N.K., et al. Synthesis of Nanosized Luminophores Gd2O3:Nd3+ by Polymer-Salt Method and Study of Their Main Characteristics. Optics and Spectroscopy, 2021, 129, P. 662-669.

265. Zhuravlev V.D., Dmitriev A.V., et al. Parameters of Glycine-Nitrate Synthesis of NiCo2O4 Spinel.Russian J. of Inorganic Chemistry, 2021, 66, P. 1895-1903.

266. Kondrat’eva O.N., Nikiforova G.E., Smirnova M.N., Pechkovskaya K.I. Synthesis and Thermophysical Properties of Ceramics Based on Magnesium Gallate.Russian J. of Inorganic Chemistry, 2021, 66, P. 957-962.

267. Sheindlin M.A., Kirillin A.V., Heyfetz L.M., Khodakov K.A. Fast automated-system for high-temperature (2500-6000-degrees-K) measurements of samples heated by laser-radiation. High Temperature, 1981, 19 (4), P. 620-627.

268. Kirillin A.V., Kovalenko M.D., et al. Apparatus and methods for examining the properties of refractory substances at high-temperatures and pressures by stationary laser-heating. High Temperature, 1986, 24 (2), P. 286-290.

269. Sheindlin M.A., Son E.E. Lasers in high-temperature energy materials. Izvestiya RAS. Energy, 2011, 5, P. 88-103. (In Russian)

270. Rivera-Chaverra M.J., Restrepo-Parra E., et al. Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications. Nanomaterials, 2020, 10 (11), P. 2099.

271. Kim M., Osone S., et al. Synthesis of Nanoparticles by Laser Ablation: A Review. Powder and Particle J., 2017, 34, P. 80-90.

272. Amendola V., Amans D., et al. Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells and doped oxide nanoparticles. Chemistry - A European J., 2020, 26, P. 9206-9242.

273. Popova-Kuznetsova E., Tikhonowski G., et al. Laser-Ablative Synthesis of Isotope-Enriched Samarium Oxide Nanoparticles for Nuclear Nanomedicine. Nanomaterials, 2020, 10 (1), P. 69.

274. Liu S., Moein Mohammadi M., Swihart M.T. Fundamentals and Recent Applications of Catalyst Synthesis Using Flame Aerosol Technology. Chemical Engineering J., 2021, 405, P. 126958.

275. Nemade K.R., Waghuley S.A. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation.Int. J. of Metals, 2014, 5, P. 389416.

276. Santiago A.A.G., Tranquilin R.L., et al. Effect of temperature on ultrasonic spray pyrolysis method in zinc tungstate: The relationship between structural and optical properties. Materials Chemistry and Physics, 2021, 258, P. 123991.

277. Matsukevich I., Krutko N.P., et al. Effect of preparation method on physicochemical properties of nanostructured MgO powder. Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 2018, 54 (3), P. 281-288.

278. Ivanovskaya M.I., Tolstik A.I., Pan’kov V.V. Synthesis of Zn0.5Mn0.5Fe2O4 by low-temperature spray pyrolysis. Inorganic Materials, 2009, 45 (11), P. 1309-1313.

279. Puzyrev I.S., Andreikov E.I., et al. Adsorption properties of mesoporous carbon synthesized by pyrolysis of zinc glycerolate.Russian Chemical Bulletin, 2021, 70 (5), P. 805-810.

280. Melkozerova M.A., Ishchenko A.V., et al.Intrinsic Defects and their Influence on Optical Properties of ALa9(GeO4)6O2 (A = Li, Na, K, Rb, Cs) Oxyapatites prepared by Spray Pyrolysis. J. of Alloys and Compounds, 2020, 839, P. 155609.

281. Boldyrev V.V., Voronin A.P., et al. Radiation-Thermal Synthesis. Current Achievement and Outlook. Solid State Ionics, 1989, 36, P. 1-6.

282. Lyakhov N.Z., Boldyrev V.V., et al. Electron beam stimulated chemical reactions in solids. Thermal Analysis, 1995, 43, P. 21-31.

283. Ancharova U.V., Mikhailenko M.A., et al. Effect of irradiation with relativistic electrons on the synthesis kinetics of Ni0.75Zn0.25Fe2O4. Vestnik NSU. Series: Physics, 2013, 8 (4), P. 41-48. (In Russian)

284. Stepanov V.A. Radiation-stimulated diffusion in solids. Technical Physics, 1998, 43 (8), P. 938-942.

285. Kretusheva I.V., Mishin M.V., Aleksandrov S.E. Synthesis of silicon dioxide nanoparticles in low temperature atmospheric pressure plasma.Russian J. of Applied Chemistry, 2014, 87 (11), P. 1581-1586.

286. Kim K.S., Kim T.H. Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials. J. of Applied Physics, 2019, 125 (7), P. 070901.

287. Uschakov A.V., Karpov I.V., Lepeshev A.A., Petrov M.I. Plasma-chemical synthesis of copper oxide nanoparticles in a low-pressure arc discharge. Vacuum, 2016, 133, P. 25-30.

288. Toropov N.A., Barzakovskii V.P., Lapin V.V., Kurtseva N.N. Handbook of Phase Diagrams of Silicate Systems. I. Binary Systems. Second Revised Edition (Diagrammy Sostoyaniya Silikatnykh Sistem - Spravochnik), Nauka, Leningrad, 1969, 822 p. (In Russian)

289. Minerals: Phase Equilibrium Diagrams: Handbook. Resp. ed. F.V. Chukhrov, Moscow, Nauka, 1974. Issue 1: Phase equilibria important for natural mineral formation. Resp. ed. F.V. Chukhrov, I.A. Ostrovsky, V.V. Lapin., 1974, 514 p. (In Russian)

290. Belov G.V., Iorish V.S., Yungman V.S. Simulation of equilibrium states of thermodynamic systems using IVTANTERMO for Windows. High Temperature, 2000, 38, P. 191-196.

291. Gusarov V.V., Suvorov S.A. Melting-point of locally equilibrium surface phases in polycrystallibe systems based on a single volume phase. J. of Applied Chemistry of the USSR, 1990, 63 (8), P. 1560-1565.

292. Gusarov V.V. The thermal effect of melting in polycrystalline systems. Thermochimica Acta, 1995, 256 (2), P. 467-472.

293. Dash J.G. History of the search for continuous melting. Reviews of Modern Physics, 1999, 71 (5), P. 1737-1743.

294. Gusarov V.V., Suvorov S.A. Transformation of Nonautonomous Phases and Densification of Polycrystalline Systems. J. of Applied Chemistry of the USSR, 1992, 65 (7), P. 1227-1235.

295. Gusarov V.V., Suvorov S.A. Transformation and transport processes in polycrystalline systems and creep of materials. J. of Applied Chemistry of the USSR, 1992, 65 (10), P. 1961-1964.

296. Gusarov V.V., Popov I.Yu. Flows in two-dimensional nonautonomous phases in polycrystalline systems. Nuovo Cimento, 1996, 18D (7), P. 1834-1840.

297. Gusarov V.V., Malkov A.A., Malygin A.A., Suvorov S.A. Thermally Activated Transformations of 2D Nonautonomous Phases and Contraction of Polycrystalline Oxide Materials. Inorganic Materials, 1995, 31 (3), P.320-323.

298. Ishutina Zh.N., Gusarov V.V., et al. Phase Transformations in Nanosized γ-Al2O3-SiO2-TiO2 Compositions.Russian J. of Inorganic Chemistry, 1999, 44 (1), P. 12-14.

299. Neiman A.Ya., Uvarov N.F., Pestereva N.N. Solid state surface and interface spreading: An experimental study. Solid State Ionics, 2007, 177 (39-40), P. 3361-3369.

300. Boldyrev V.V. Mechanochemistry and mechanical activation of solids.Russian Chemical Reviews, 2006, 75 (3), P. 177-189.

301. Grigorieva T., Korchagin M., Lyakhov N.Combinations of SHS and mechanochemical synthesis for nanopowder technologies. Powder and Particle, 2002, 20, P. 144-158.

302. Isupov V.P., Borodulina I.A., Gerasimov K.B., Bulina N.V. Effect of Mechanical Activation on Reaction between Boehmite and Lithium Carbonate. Inorganic Materials, 2020, 56, P. 56-61.

303. Eremina N.V., Isupov V.P. Mechanochemical synthesis of lithium pentaaluminate from lithium carbonate and boehmite. Inorganic Materials, 2020, 56 (5), P. 466-472.

304. Avvakumov E., Senna M., Kosova N. Soft Mechanochemical Synthesis: a Basis for New Chemical Technologies. Boston/Dodrecht/ London: Kluwer Academic Publishers, 2001, 201 p.

305. Avvakumov E.G., Pushnyakova V.A. Mechanochemical synthesis of complex oxides. Khimicheskaya Tekhnologiya, 2002, 5, P. 6-17. (In Russian)

306. Kolbanev I.V., Shlyakhtina A.V., et al. Room-temperature mechanochemical synthesis of RE molybdates: Impact of structural similarity and basicity of oxides. J. of the American Ceramic Society, 2021, 104, P. 5698-5710.


Review

For citations:


Almjasheva O.V., Popkov V.I., Proskurina O.V., Gusarov V.V. Phase formation under conditions of self-organization of particle growth restrictions in the reaction system. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(2):164-180. https://doi.org/10.17586/2220-8054-2022-13-2-164-180

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)