Synthesis, characterization and electrical properties of the nanosized perovskite LaFeO3
https://doi.org/10.17586/2220-8054-2022-13-2-181-191
Abstract
Single-phase highly crystalline LaFeO3 is synthesized by autocombustion of the gel complex obtained from citrate and metal nitrate precursors. The XRD analysis exhibited the transformation of amorphous phases of La2O3 and Fe2O3 into highly crystalline LaFeO3 at 1000 ◦C. The agglomerated semi spherical morphology is observed. The average particle size of sintered pellets at 1000 ◦C for 4 h, 8, 12, and 16 h heating time is found 105, 130, 160 and 200 nm, respectively. TGA analysis revealed 27% weight lost due to the decomposition of La(OH)3 and Fe(OH)3 into La2O3, Fe2O3 , and LaFeO3. Electrical properties of LaFeO3 were found to be dependent on micro-structural heterogeneities i.e., grain and grain boundaries. Two probe DC resistivity exhibited decrease in resistance with increasing heat treatment and time. The outcomes of this study confirmed the potential applications of perovskite-type LaFeO3 in energy and environmental sectors.
About the Authors
Muhammad Irfan AshgarRussian Federation
Muhammad Kashif Shahid
Russian Federation
Muhammad Haq Nawaz
Russian Federation
Muhammad Idrees
Russian Federation
Muhammad Asif
Russian Federation
Ahsan Ali
Russian Federation
References
1. Shahid M.K., Batool A., Kashif A., Nawaz M.H., et al. Biofuels and biorefineries: Development, application and future perspectives emphasizing the environmental and economic aspects. J. Environ. Manage., 2021, 297, 113268.
2. Khan S.A., Arshad Z., Shahid S., Arshad I., et al. Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin.Compos. Part B Eng., 2019, 175, 107120.
3. Wang H., Zheng H., Jiang Z., Dai Y., et al. Efficacies of biochar and biochar-based amendment on vegetable yield and nitrogen utilization in four consecutive planting seasons. Sci. Total Environ. 2017, 593-594, P. 124-133.
4. Shahid M.K., Kashif A., Fuwad A., Choi, Y. Current advances in treatment technologies for removal of emerging contaminants from water - A critical review. Coord. Chem. Rev., 2021, 442, 213993.
5. Hasan S.A.U., Lee D.S., Im S.H., Hong K.H. Present Status and Research Prospects of Tin-based Perovskite Solar Cells. Sol. RRL, 2020, 4, 1-30.
6. Sri Gyan D., Dwivedi A., Roy P., Maiti T. Synthesis and thermoelectric properties of Ba2TiFeO6 double perovskite with insight into the crystal structure. Ferroelectrics, 2018, 536, P. 146-155.
7. Nguyen A.T., Phung V.D., Mittova V.O., Ngo H.D., et al. Fabricating nanostructured HoFeO3 perovskite for lithium-ion battery anodes via coprecipitation. Scr. Mater., 2022, 207, 114259.
8. Albadi Y., Martinson K.D., Shvidchenko A.V., Buryanenko I.V., et al. Synthesis of GdFeO3 nanoparticles via low-temperature reverse coprecipitation: the effect of strong agglomeration on the magnetic behavior. Nanosyst. Physics, Chem. Math., 2020, 11, P. 252-259.
9. Chang L., Li J., Le Z., Nie P., et al. Perovskite-type CaMnO3 anode material for highly efficient and stable lithium ion storage. J. Colloid Interface Sci., 2021, 584, P. 698-705.
10. Vo Q.M., Mittova V.O., Nguyen V.H., Mittova I.Y., et al. Strontium doping as a means of influencing the characteristics of neodymium orthoferrite nanocrystals synthesized by co-precipitation method. J. Mater. Sci. Mater. Electron., 2021, 32, P. 26944-26954.
11. Tikhanova S.M., Lebedev L.A., Martinson K.D., Chebanenko M.I., et al. The synthesis of novel heterojunction h-YbFeO3/o-YbFeO3 photocatalyst with enhanced Fenton-like activity under visible-light. New J. Chem., 2021, 45, P. 1541-1550.
12. Liu J., Sheha E., El-Dek S.I., Goonetilleke D., et al. SmFeO3 and Bi-doped SmFeO3 perovskites as an alternative class of electrodes in lithium-ion batteries. CrystEngComm, 2018, 20, P. 6165-6172.
13. Fossdal A., Menon M., Wiik K., Einarsrud M., et al. Crystal Structure and Thermal Expansion of La1-xSrxFeO3 materials. J. Am. Ceram. Soc., 2004, 87, P. 1952-1958.
14. Scrimshire A., Lobera A., Bell A.M.T., Jones A.H., et al. Determination of Debye temperatures and Lamb-Mo¨ssbauer factors for LnFeO3 ortho- ferrite perovskites (Ln = La, Nd, Sm, Eu, Gd). J. Phys. Condens. Matter, 2018, 30, 105704.
15. Seo J.W., Fullerton E.E., Nolting F., Scholl A., et al. Antiferromagnetic LaFeO3 thin films and their effect on exchange bias. J. Phys. Condens. Matter, 2008, 20, 264014.
16. Wheeler G.P., Baltazar V.U., Smart T.J., Radmilovic A., et al.Combined Theoretical and Experimental Investigations of Atomic Doping to Enhance Photon Absorption and Carrier Transport of LaFeO3 Photocathodes. Chem. Mater., 2019, 31, P. 5890-5899.
17. Abdallah F.B., Benali A., Triki M., Dhahri E., et al. Effect of annealing temperature on structural, morphology and dielectric properties of La0.75Ba0.25FeO3 perovskite. Superlattices Microstruct., 2018, 117, P. 260-270.
18. Gosavi P.V., Biniwale R.B. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization. Mater. Chem. Phys., 2010, 119, P. 324-329.
19. Nakayama S., LaFeO3 perovskite-type oxide prepared by oxide-mixing, co-precipitation and complex synthesis methods. J. Mater. Sci., 2001, 36, P. 5643-5648.
20. Sivakumar M., Gedanken A., Zhong W., Jiang Y.H., et al. Sonochemical synthesis of nanocrystalline LaFeO3. J. Mater. Chem., 2004, 14, P. 764- 769.
21. Qi X., Zhou J., Yue Z., Gui Z., et al. A simple way to prepare nanosized LaFeO3 powders at room temperature. Ceram.Int., 2003, 29, P. 347-349.
22. Yang Z., Huang Y., Dong B., Li H.L. Controlled synthesis of highly ordered LaFeO3 nanowires using a citrate-based sol-gel route. Mater. Res. Bull., 2006, 41, P. 274-281.
23. Wang Y., Zhu J., Zhang L., Yang X., et al. Preparation and characterization of perovskite LaFeO3 nanocrystals. Mater. Lett., 2006, 60, P. 1767-1770.
24. Su H., Jing L., Shi K., Yao C., et al. Synthesis of large surface area LaFeO3 nanoparticles by SBA-16 template method as high active visible photocatalysts. J. Nanoparticle Res., 2010, 12, P. 967-974.
25. Tang P., Tong Y., Chen H., Cao F., et al. Microwave-assisted synthesis of nanoparticulate perovskite LaFeO3 as a high active visible-light photocatalyst. Curr. Appl. Phys., 2013, 13, P. 340-343.
26. Liu T., Xu Y. Synthesis of nanocrystalline LaFeO3 powders via glucose sol-gel route. Mater. Chem. Phys., 2011, 129, P. 1047-1050.
27. Idrees M., Nadeem M., Atif M., Siddique M., et al. Origin of colossal dielectric response in LaFeO3. Acta Mater., 2011, 59, P. 1338-1345.
28. Ko¨ferstein R., Ja¨ger L., Ebbinghaus, S.G., Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics. Solid State Ionics, 2013, 249-250, 1-5.
29. Thuy N.T., Minh D. Le, Size effect on the structural and magnetic properties of nanosized perovskite LaFeO3 prepared by different methods. Adv. Mater. Sci. Eng., 2012, 380306.
30. Liu W., Zeng X., Liu S., Zhu Y., et al. Growth and characterization of LaFeO3 crystals. Key Eng. Mater., 2014, 602-603, P. 27-31.
31. Idrees M., Nadeem M., Siddiqi S.A., Ahmad R., et al. The organic residue and synthesis of LaFeO3 by combustion of citrate and nitrate precursors. Mater. Chem. Phys., 2015, 162, P. 652-658.
32. Vijayaraghavan T., Bradha M., Babu P., Parida K.M., et al. Influence of secondary oxide phases in enhancing the photocatalytic properties of alkaline earth elements doped LaFeO3 nanocomposites. J. Phys. Chem. Solids, 2020, 140, 109377.
33. Zhao F., Bai Z., Fu Y., Zhao D., et al. Tribological properties of serpentine, La(OH)3 and their composite particles as lubricant additives. Wear, 2012, 288, P. 72-77.
34. Kang J.G., Kim Y. Il, Won Cho D., Sohn Y. Synthesis and physicochemical properties of La(OH)3 and La2O3 nanostructures. Mater. Sci. Semicond. Process., 2015, 40, P. 737-743.
35. Lazarevic´ Z.Zˇ., Jovalekic´ Cˇ., Recnik A., Ivanovski V.N., et al. Study of manganese ferrite powders prepared by a soft mechanochemical route. J. Alloys Compd., 2011, 509, P. 9977-9985.
36. Shahid M.K., Choi Y. Characterization and application of magnetite Particles, synthesized by reverse coprecipitation method in open air from mill scale. J. Magn. Magn. Mater., 2020, 495, 165823.
37. Kabir H., Nandyala S.H., Rahman M.M., Kabir M.A., et al. Influence of calcination on the sol-gel synthesis of lanthanum oxide nanoparticles. Appl. Phys. A Mater. Sci. Process., 2018, 124, 1-11.
38. Boumaza S., Boudjellal L., Brahimi R., Belhadi A., et al. Synthesis by citrates sol-gel method and characterization of the perovskite LaFeO3: application to oxygen photo-production. J. Sol-Gel Sci. Technol., 2020, 94, P. 486-492.
39. Al-Mamari R.T., Widatallah H.M., Elzain M.E., Gismelseed A.M., et al. Structural, Mo¨ssbauer, and Optical studies of mechano-synthesized Ru3+-doped LaFeO3 nanoparticles. Hyperfine Interact., 2021, 243, 4.
40. Thirumalairajan S., Girija K., Ganesh I., Mangalaraj D., et al. Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photocatalytic activity. Chem. Eng. J., 2012, 209, P. 420-428.
41. Thirumalairajan S., Girija K., Mastelaro V.R., Ponpandian N. Photocatalytic degradation of organic dyes under visible light irradiation by floral-like LaFeO3 nanostructures comprised of nanosheet petals. New J. Chem., 2014, 38, P. 5480-5490.
42. Tho N.D., Huong D., Van Ngan P.Q., Thai G.H., et al. Effect of sintering temperature of mixed potential sensor Pt/YSZ/LaFeO3 on gas sensing performance. Sensors Actuators B Chem., 2016, 224, P. 747-754.
43. Wang S., Wang D., Chung D.D.L., Chung J.H. Method of sensing impact damage in carbon fiber polymer-matrix composite by electrical resistance measurement. J. Mater. Sci., 2006, 41, P. 2281-2289.
44. Pirzada B.M., Sabir S. Polymer-based nanocomposites for significantly enhanced dielectric properties and energy storage capability, in: Polymer- Based Nanocomposites for Energy and Environmental Applications, Elsevier Ltd., 2018, P. 132-183.
Review
For citations:
Ashgar M.I., Shahid M.K., Nawaz M.H., Idrees M., Asif M., Ali A. Synthesis, characterization and electrical properties of the nanosized perovskite LaFeO3. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(2):181-191. https://doi.org/10.17586/2220-8054-2022-13-2-181-191