Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Phase-contrast method for determining the size of the effective focal spot of a nanofocus X-ray tube

https://doi.org/10.17586/2220-8054-2025-16-1-5-13

Abstract

The work is devoted to the development of a method for testing the focal spot size of nanofocus and microfocus X-ray tubes based on phase contrast radiography of test objects. The method is based on the comparison of the interference X-ray image with the calculated values obtained by the exact numerical solution of the wave equation. The high sensitivity of the method to the size of the source is ensured by the fusion of interference fringes with contrast of different signs. The formation of X-ray phase contrast images of test objects is analyzed on the basis of the wave equation using numerical modeling of the intensity profile. An analytical expression has been obtained to estimate the size of the X-ray tube focus. The results of calculations of phase contrast profiles for a nylon fishing line and a reference nanofocus test are presented.

About the Authors

A. A. Manushkin
“Diagnostika-M” LLC
Russian Federation

Alexey A. Manushkin

Volgogradskiy, 42, Moscow, 109316



N. N. Potrakhov
Saint Petersburg Electrotechnical University “LETI”
Russian Federation

Nikolay N. Potrakhov

Professora Popova, 5, St. Petersburg, 197022



D. K. Kostrin
Saint Petersburg Electrotechnical University “LETI”
Russian Federation

Dmitrii K. Kostrin

Professora Popova, 5, St. Petersburg, 197022



K. K. Guk
Saint Petersburg Electrotechnical University “LETI”
Russian Federation

Karina K. Guk

Professora Popova, 5, St. Petersburg, 197022



References

1. Staroverov N.E. A method for automated control of electronic components on microfocus X-ray images. J. of the Russian Universities. Radioelectronics, 2021, 24 (4), P. 27–36.

2. Potrakhov N.N., Gryaznov A.Yu., Zhamova K.K., Bessonov V.B., Obodovsky A.V., Staroverov N.E., Kholopova E.D. Microfocus radiography in medicine: physical and technical features and modern means of X-ray diagnostics. Biotechnosphere, 2015, 5 (41), P. 55–63.

3. Lider V.V. X-ray methods of axial phase contrast and axial holography. Industrial Laboratory. Diagnostics of Materials, 2015, 81 (12), P. 32–40.

4. Nugent K.A., Paganin D., Gureyev T.E. A phase odyssey. Physics Today, 2001, 54 (8), P. 27–32.

5. Snigirev A., Snigireva I., Kohn V., Kuznetsov S., Schelokov I. On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Review of Scientific Instruments, 1995, 66 (12), P. 5486–5492.

6. Cloetens P., Barrett R., Baruchel J., Guigay J.P., Schlenker M. Phase objects in synchrotron radiation hard X-ray imaging. J. of Physics D: Applied Physics, 1996, 29 (1), P. 133–146.

7. Davis T.J., Gao D., Gureyev T.E., Stevenson A.W.,Wilkins S.W. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature, 1995, 373, P. 595–598.

8. Gryaznov A.Yu. On the possibility of obtaining phase-contrast images on microfocus X-ray sources. Biotechnosphere, 2010, 1 (7), P. 30–32.

9. Shovkun V.Ya., Kumakhov M.A. Phase contrast imaging with micro focus X-ray tube. Proceedings of SPIE, 2006, 5943, 594315.

10. Shovkun V.Ya. Development of a phase-contrast mammograph in the “in-line holography” scheme. Medical physics, 2007, 2 (34), P. 25–34.

11. Hertz H.M., Bertilson M., Chubarova E., Ewald J., Gleber S.-C., Hemberg O., Henriksson M., Hofsten O., Holmberg A., Lindblom M., Mudry E., Otendal M., Reinspach J., Schlie M., Skoglund P., Takman P., Thieme J., Sedlmair J., Tjornhammar R., Tuohimaa T., Vita M., Vogt U. Laboratory X-ray micro imaging: Sources, optics, systems and applications. J. of Physics: Conference Series, 2009, 186 (1), 012027.

12. Bavendiek K., Ewert U., Riedo A., Heike U., Zscherpel U. New measurement methods of focal spot size and shape of X-ray tubes in digital radiological applications in comparison to current standards. Proceedings of the “18th World Conference on Nondestructive Testing”, Durban, South Africa, 2012, 346.

13. Dougherty G., Kawaf Z. The point spread function revisited: image restoration using 2-D deconvolution. Radiography, 2001, 7 (4), P. 255–262.

14. Di Domenico G., Cardarelli P., Contillo A., Talbi A., Gambaccini M. X-ray focal spot reconstruction by circular penumbra analysis – Application to digital radiography systems. Medical Physics, 2016, 43 (1), P. 294–302.

15. Bicher B.A., Meli F., Kung A., Sofiienko A. Traceable x-ray focal spot reconstruction by circular edge analysis: from sum-microfocus to mesofocus. Measurement Science and Technology, 2022, 33 (7), 074005.

16. Nachtrab F., Firsching M., Uhlmann N., Speier C., Takman P., Tuohimaa T., Heinzl C., Kastner J., Larsson D.H., Holmberg A., Berti G., Krumm M., Sauerwein C. NanoXCT: development of a laboratory nano-CT system. Proceedings of SPIE, 2014, 9212, 92120L.

17. Goodman J.W. Introduction to Fourier optics. Roberts and Company Publishers, Greenwood Village, 2005, 491 p.

18. Cowley J.M. Diffraction physics. North Holland Publishing, Amsterdam, 1995, 488 p.

19. Shao W., He T., Wang L., Wang J.X., Zhou Y., Shao B., Ugur E., Wu W., Zhang Z., Liang H., de Wolf S., Bakr O.M., Mohammed O.F. Capillary manganese halide needle-like array scintillator with isolated light crosstalk for micro-X-ray imaging. Advanced Materials, 2024, 36 (21), e2312053.

20. Pfeiffer F., Bech M., Bunk O., Donath T., Henrich B., Kraft P., David C. X-ray dark-field and phase-contrast imaging using a grating interferometer. J. of Applied Physics, 2009, 105 (10), 102006.


Review

For citations:


Manushkin A.A., Potrakhov N.N., Kostrin D.K., Guk K.K. Phase-contrast method for determining the size of the effective focal spot of a nanofocus X-ray tube. Nanosystems: Physics, Chemistry, Mathematics. 2025;16(1):5-13. https://doi.org/10.17586/2220-8054-2025-16-1-5-13

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)