Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

The joint effect of doping with tin(IV) and heat treatment on the transparency and conductivity of films based on titanium dioxide as photoelectrodes of sensitized solar cells

https://doi.org/10.17586/2220-8054-2022-13-2-192-203

Abstract

This study focuses on the preparation of transparent conducting TiO2 films with the addition of Sn(IV) by sol-gel method from film-forming solutions based on n-C4H9OH-(C4H9O)4Ti-SnCl4·5H2O at the temperature of 300-400 ◦C. Such films attract great attention because they can be used in flexible transparent photoanodes for the preparation of high effective sensitized solar cells. The morphology, phase composition, and optical properties of films were studied by X-ray diffraction, X-ray spectral microanalysis, scanning electron microscopy, spectrophotometry, and ellipsometry. The content of Sn(IV) influences the composition of films. The solid solution based on titanium dioxide with anatase structure is formed at a content of 5 mol.% Sn(IV); the films with a content of 10-30 mol.% Sn(IV) are the mixture of the TiO2:Sn solid solution and SnO2 with rutile structure. Regardless of the tin content, all films contain an amorphous TiO2·nH2O phase. The formation of oxide phases occurs through the stages of thermal destruction of Sn(OH)3Cl, tin acid, and burnout of butoxy groups of butoxytitanium(IV). The as-synthesized oxide films are uniform and continuity regardless of the tin content. An increase in the content of Sn(IV) in the composition of the films leads to an increase in their thickness from 48 to 105 nm and a decrease in the refractive index from 1.89 to 1.66. The minimum resistance value is characteristic for films that are the solid solution with an anatase structure and with an admixture of the amorphous phase of titanic acid. The surface resistance of the glass decreases by 108 times after deposition of the film based on TiO2 with 5 mol.% Sn(IV). Films based on TiO2 with 5 mol.% Sn(IV) are characterized by a higher transparency coefficient in the entire visible range of the spectrum (80-70%) and can be used in photoelectrode in dye-sensitized solar cells.

About the Authors

S. . Kuznetsova
National Research Tomsk State University
Russian Federation


O. . Khalipova
National Research Tomsk State University
Russian Federation


Chen Yu-Wen
National Central University
Russian Federation


V. . Kozik
National Research Tomsk State University
Russian Federation


References

1. Abudayyeh O.K., Chavez A., Han S.M., Rounsaville B., Upadhyaya V. and Rohatgi A. Silver-carbon-nanotube composite metallization for increased durability of silicon solar cells against cell cracks. Sol. Energy Mater. Sol. Cells., 2021, 225, 111017.

2. Ramprabhu R., Sanjay K., Saran Kumar V., Santhosh A.C., Saravanan M. and Ajayan J. An overview of recent developments in silicon solar cells. ICACCS, 2019, P. 1120-1122.

3. R.H.E. Hassanien, M. Li and F. Yin. The integration of semi-transparent photovoltaic on greenhouse roof for energy and plant production. Renew. Energ., 2018, 121, P. 377-388.

4. Das P., Sengupta D., Kasinadhuni U., Mondal B. and Mukherjee K. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics. Mater. Res. Bull, 2015, 66, P. 32-38.

5. Fitra M., Daut I., Irwanto M., Gomesh N. and Irwan Y.M. Effect of TiO2 thickness Dye Solar Cell on charge generation, Energy Procedia, Energy Procedia, 2013, 36, P. 278-286.

6. Winkless L. Could dye-sensitised solar cells work in the dark. Mater. Today, 2017, 20, 289.

7. Blakers A., Zin N., McIntosh K.R. and Fong K. High efficiency silicon solar cells.Energy Procedia, 2013, 33, 1-10.

8. Wang W.W., Zhu Y.J. and Yang L.X. ZnO-SnO2 Hollow Spheres and Hierarchical Nanosheets: Hydrothermal Preparation, Formation Mechanism, and Photocatalytic Properties. Adv. Funct. Mater., 2007, 17, P. 59-64.

9. Li N., Du K., Liu G., Xie Y., Zhou G., Zhu J., Li F. and Cheng H.-M. Effects of oxygen vacancies on the electrochemical performance of tin oxide. J. Mater. Chem. A, 2013, 1, P. 1536-1539.

10. Yang L., Yang Y., Liu T., Ma X., Lee S.W. and Wang Y. Oxygen vacancies confined in SnO2 nanoparticles for glorious photocatalytic activities from the UV, visible to near-infrared region. New J. Chem., 2018, 42, P. 15253-1526.

11. Domashevskaya E.P., Ryabtsev S.V., Tutov E.A., Yurakov, Chuvenkova O.A.Y.A., Lukin A.N. Optical properties of SnO2-x nanolayers. Tech. Phys. Lett., 2006, 32, P. 782-784.

12. Senevirathna M.K.I., Pitigala P.K.D.P., Premalal E.V.A., Tennakone K., Kumara G.R.A. and Konno A. Stability of the SnO2/MgO dye-sensitized photoelectrochemical solar cell. Sol. Energy Mater. Sol. Cells, 2007, 91, P. 544-547.

13. C. Kılıc¸ and Zunger A. Origins of Coexistence of Conductivity and Transparency in SnO2. Phys. Rev. Lett., 2002, 88(9), 95501.

14. Snaith H.J. and Ducati C. SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett., 2010, 10(4), P. 1259-1265.

15. Li Y., Zhu J., Huang Y., Liu F., Lu M., Chen S., Hu L., Tang J., Yao J., Dai S. Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells. RSC Adv., 2015, 5, 28424-28429.

16. Ke W., Fang G., Liu Q., Xiong L., Qin P., Tao H., Wang J., Lei H., Li B., Wan J., Yang G., Yan Y. Low-temperature solution processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc., 2015, 137, P. 6730-6733.

17. Xie H., Yin X., Liu J., Guo Y., Chen P., Que W., Wang G. and Gao B. Low temperature solution-derived TiO2-SnO2 bilayered electron transport layer for high performance perovskite solar cells. Appl. Surf. Sci., 2019, 464, P. 700-707.

18. Pitchaiy S., Eswaramoorthy N., Natarajan M., Santhanam A., Ramakrishnan V.M., Asokan V., Palanichamy P., Palanisamy B., Kalimuthua A. and Velauthapillaib D.Interfacing green synthesized flake like-ZnO with TiO2 for bilayer electron extraction in perovskite solar cells. New J. Chem., 2020, 44, P. 8422-8433.

19. Gambhire A.B., Lande M.K., Kalokhe S.B., Shirsat M.D., Patil K.R., Gholap R.S. and Arbad B.R. Synthesis and characterization of high surface area CeO2-doped SnO2 nanomaterial. Mater. Chem. Phys., 2008, 112, P. 719-722.

20. Bose A.C., Kalpana D., Thangadurai P. and Ramasamy S. Synthesis and characterization of nanocrystalline SnO2 and fabrication of lithium cell using nano-SnO2. J. Power Sources., 2002, 107, P. 138-141.

21. Yang Y., Zhang Q., Zhang B., Mi W.B., Chen L., Li L., Zhao C., Diallo K.E.M. and Zhang X.X. The influence of metal interlayers on the structural and optical properties of nano-crystalline TiO2 films. Appl. Surf. Sci., 2012, 258, P. 4532-4537.

22. Kaleji B.K. and Sarraf-Mamoory R. Nanocrystalline sol-gel TiO2-SnO2 coatings: preparation, characterization and photo-catalytic performance. Mater. Res. Bull., 2012, 47, P. 362-369.

23. Medjaldi F., Bouabellou A., Bouachiba Y., Taabouche A., Bouatia K. and Serrar H. Study of TiO2, SnO2 and nanocomposites TiO2:SnO2 thin films prepared by sol-gel method: Successful elaboration of variable-refractive index systems. Mater. Res. Express., 2020, 7, 016439.

24. Jalava J., Taavitsaine V., Haario H. and Lamberg L. Determination of particle and crystal size distribution from turbidity spectrum of TiO2 pigments by means of t-matrix. J. Quant. Spectrosc. Radiat. Transfer., 1998, 60, P. 399-409.

25. Zherebtsov D.A., Kuznetsov G.F., Kleshchev D.G., Syutkin S.A., Pervushin V.Y., German V.A., Viktorov V.V., Kolmogortsev A.M. and Serikov A.S. Characteristics of the hydrous titanium dioxide-anatase phase transformation during hydrothermal treatment in aqueous solutions.Russ. J. Inorg. Chem., 2010, 55, P. 1197-1201.

26. Jackson P. and Parfitt G.D. Infra-red study of the surface properties of rutile adsorption of ethanol, n-butanol and n-hexanol. J. Chem. Soc. Faraday Trans. I., 1972, 1443.

27. Erdei-Gruz T. Transfer Phenomena in Water Solutions. John Wiley &Sons, New York, 1974, 512 p.

28. Batzill M. and Diebold U. The surface and materials science of tin oxide. Progress in Surface Science, 2005, 79, P. 47-154.

29. Popescu D.A., Herrmann J., Ensuque A. and Bozon-Verduraz F., Nanosized tin dioxide: Spectroscopic (UV-VIS, NIR, EPR) and electrical conductivity studies. Phys. Chem. Chem. Phys., 2001, 3, P. 2522-2530.


Review

For citations:


Kuznetsova S., Khalipova O., Yu-Wen Ch., Kozik V. The joint effect of doping with tin(IV) and heat treatment on the transparency and conductivity of films based on titanium dioxide as photoelectrodes of sensitized solar cells. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(2):192-203. https://doi.org/10.17586/2220-8054-2022-13-2-192-203

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)