Synthesis and analysis of cerium-containing carbon quantum dots for bioimaging in vitro
https://doi.org/10.17586/2220-8054-2022-13-2-204-211
Abstract
The latest biomedical approaches based on the use of nanomaterials possessing luminescent properties make it possible to effectively visualize cancer cells or tissues, thus expanding diagnostic capabilities of the current bioimaging techniques. In this paper, a new scheme is proposed for the synthesis of cerium-containing carbon quantum dots (Ce-Qdots) of ultra-small size, promising for biomaging. Ce-Qdots have a high degree of biocompatibility, as well as remarkable redox activity. Cytotoxicity analysis performed using 4 human cell cultures confirmed the high degree of Ce-Qdots biocompatibility. It was shown that Ce-Qdots in concentrations up to 200 µ g/ml do not have a negative effect on the metabolic, proliferative, migration and clonogenic activity of cell cultures after 24, 48 and 72 hours of coincubation. Ce-Qdots can be considered as the basis of a new theranostic agent for bioimaging and targeted delivery of biologically active substances.
About the Authors
A. L. PopovRussian Federation
I. V. Savintseva
Russian Federation
A. M. Ermakov
Russian Federation
N. R. Popova
Russian Federation
D. D. Kolmanovich
Russian Federation
N. N. Chukavin
Russian Federation
A. F. Stolyarov
Russian Federation
A. B. Shcherbakov
Russian Federation
O. S. Ivanova
Russian Federation
V. K. Ivanov
Russian Federation
References
1. Liu Q., Guo B.D., Rao Z.Y., Zhang B.H., Gong J.R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett., 2013, 13, P. 2436-2441.
2. Ruan S.B., Qian J., Shen S., Zhu J.H., Jiang X.G., He Q., Gao H.L. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale, 2014, 6, P. 10040-10047.
3. Zholobak N.M., Popov A.L., Shcherbakov A.B., Popova N.R., Guzyk M.M., Antonovich V.P., Yegorova A.V., Scrypynets,Y.V. Leonenko I.I., Baranchikov A.Ye., Ivanov V.K. Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling. Beilstein Journal of Nanotechnology, 2016, 7, P. 1905-1917.
4. Zhang J., Yu S.H. Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today, 2016, 19, P. 382-393.
5. Xu Q., Li B., Ye Y., Cai W., Li W., Yang C., Chen Y., Xu M., Li N., Zheng X., Street J., Luo Y., Cai L. Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Res., 2018, 11, P. 3691-3701.
6. Hamd-Ghadareh S., Salimi A., Fathi F., Bahrami S. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosensors and Bioelectronics, 2017, 96, P. 308-316.
7. Roy P., Chen P.C., Periasamy A.P., Chen Y.N., Chang H.T. Photoluminescent carbon nanodots: synthesis, physicochemical properties and analyti- cal applications. Mater. Today, 2015, 18(8), P. 447-458.
8. Zheng X.T., Ananthanarayanan A., Luo K.Q., Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 2015, 11(14), P. 1620-1636.
9. Shang W., Zhang X., Zhang M., Fan Z., Sun Y., Han M., Fan L. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cell. Nanoscale, 2014, 6, P. 5799-5806.
10. Mo L., Li J., Liu Q., Qiu L., Tan W. Nucleic acid-functionalized transition metal nanosheets for biosensing applications. Biosensors and Bioelectronics, 2017, 89(1), P. 201-211.
11. Ruan S.B., Qian J., Shen S., Chen J.T., Zhu J.H., Jiang X.G., He Q., Yang W.L., Gao H.L. Fluorescent carbonaceous nanodots for noninvasive glioma imaging after angiopep-2 decoration. Bioconjugate Chem., 2014, 25, P. 2252-2259.
12. Wang N., Zheng A.Q., Liu X., Chen J.J., Yang T., Chen M., Wang J.H. Deep eutectic solvent-assisted preparation of nitrogen/chloride-doped carbon dots for intracellular biological sensing and live cell imaging. ACS Appl. Mater.Interfaces, 2018, 10, P. 7901-7909.
13. Zholobak N.M., Shcherbakov A.B., Ivanova O.S., Reukov V., Baranchikov A.E., Ivanov V.K. Nanoceria-curcumin conjugate: synthesis and selective cytotoxicity against cancer cells under oxidative stress conditions. J. Photochem. Photobiol. B., 2020, 209, P. 111921.
14. Shydlovska O., Kharchenko E., Zholobak N., Shcherbakov A., Marynin A., Ivanova O., Baranchikov A., Ivanov V. Cerium oxide nanoparticles increase cytotoxicity of TNF-alpha in vitro. Nanosyst. Phys. Chem. Math., 2018, 9(4), P. 537-543.
15. Zholobak N.M., Shcherbakov A.B., Bogorad-Kobelska A.S., Ivanova O.S., Baranchikov A.Y., Spivak N.Y., Ivanov V.K. Panthenol-stabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROS-induced and UV-induced damage. J. Photochem. Photobiol. B., 2014, 130, P. 102-108.
16. Popova N.R., Shekunova T.O., Popov A.L., Selezneva I.I., Ivanov V.K. Cerium oxide nanoparticles provide radioprotective effects upon X-ray irradiation by modulation of gene expression. Nanosyst. Phys. Chem. Math., 2019, 10(5), P. 564-572.
17. Fritsche E., Haarmann-Stemmann T., Kapr J., Galanjuk S., Hartmann J., Mertens P. R., Ka¨mpfer A.A.M., Schins R.P.F., Tigges J., Koch K. Stem cells for next level toxicity testing in the 21st century. Small, 2021, 17(15), P. 2006252.
18. Zhang M., Bai L., Shang W., Xie W., Ma H., Fu Y., Fang D., Sun H., Fan L., Han M., Liu C., Yang S. Facile synthesis of water-soluble, highly fluorescent graphenequantum dots as a robust biological label for stem cells. J. Mater. Chem., 2012, 22, P. 7461-7467.
19. Shao D., Lu M., Xu D., Zheng X., Pan Y., Song Y., Xu J., Li M., Zhang M., Li J., Chi G., Chen L., Yang B. Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells. Biomater. Sci., 2017, 5, P. 1820-1827.
20. Brix N., Samaga D., Hennel R., Gehr K., Zitzelsberger H., Lauber, K. The clonogenic assay: robustness of plating efficiency-based analysis is strongly compromised by cellular cooperation. Radiat. Oncol., 2020, 15, P. 248.
21. Brix N., Samaga D., Belka C., Zitzelsberger H., Lauber K. Analysis of clonogenic growth in vitro. Nature protocols, 2021, 16, P. 4963-4991.
22. Popov A., Abakumov M., Savintseva I., Ermakov A., Popova N., Ivanova O., Kolmanovich D., Baranchikov A., Ivanov V. Biocompatible dextrancoated gadolinium-doped cerium oxide nanoparticles as MRI contrast agents with high T1 relaxivity and selective cytotoxicity to cancer cells. J. Mater. Chem. B, 2021, 9, P. 6586-6599.
23. de Arau´jo Vieira L.F., Lins M.P., Nica´cio Viana I.M.M., dos Santos J.E., Smaniotto S., dos Santos Reis M.D. Metallic nanoparticles reduce the migration of human fibroblasts in vitro. Nanoscale res. lett., 2017, 12(1), P. 200.
24. Ribeiro F.M., de Oliveira M.M., Singh S., Sakthivel T.S., Neal C.J., Seal S., Ueda-Nakamura T., Lautenschlager S.O.S., Nakamura C.V. Ceria nanoparticles decrease UVA-induced fibroblast death through cell redox regulation leading to cell survival, migration and proliferation. Front. Bioeng. Biotechnol., 2020, P. 1133.
25. Xiao Y., Li J., Wang S., Yong X., Tang B., Jie M., Dong H., Yang X., Yang S. Cerium oxide nanoparticles inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression.Int J Nanomedicine, 2016, 11, P. 3023-3034.
26. Chen D., Li B., Lei T., Na D., Nie M., Yang Y., Xie C., He Z., Wang J. Selective mediation of ovarian cancer SKOV3 cells death by pristine carbon quantum dots/Cu2O composite through targeting matrix metalloproteinases, angiogenic cytokines and cytoskeleton. J Nanobiotechnol, 2021, 19, P. 68.
27. Manzanares D., Cen˜a V. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 2020, 12, P. 371.
28. Cle´ment M. V., Ponton A., Pervaiz S. Apoptosis induced by hydrogen peroxide is mediated by decreased superoxide anion concentration and reduction of intracellular milieu. FEBS letters, 1998, 440(1-2), P. 13-18.
29. Clark A., Zhu A., Sun K., Petty H.R. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis. J Nanopart Res., 2011, 13(10), P. 5547-5555.
30. Pagliari F., Mandoli C., Forte G., Magnani E., Pagliari S., Nardone G., Licoccia S., Minieri M., Di Nardo P., Traversa E. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano, 2012, 6(5), P. 3767-3775.
31. Weng Q., Sun H., Fang C., Xia F., Liao H., Lee H., Wang J., Xie A., Ren J., Guo X., Li F., Yang B., Ling D. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat.Commun., 2021, 12, P. 1436.
Review
For citations:
Popov A.L., Savintseva I.V., Ermakov A.M., Popova N.R., Kolmanovich D.D., Chukavin N.N., Stolyarov A.F., Shcherbakov A.B., Ivanova O.S., Ivanov V.K. Synthesis and analysis of cerium-containing carbon quantum dots for bioimaging in vitro. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(2):204-211. https://doi.org/10.17586/2220-8054-2022-13-2-204-211