Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Mechanism of formation of nanocrystalline particles with core-shell structure based on titanium oxynitrides with nickel in the process of plasma-chemical synthesis of TiNi in a low-temperature nitrogen plasma

https://doi.org/10.17586/2220-8054-2022-13-2-212-219

Аннотация

This paper presents the results of experiments, structural and morphological certification and modeling of ultrafine and nanocrystalline TiN-Ni “core-shell“ structures obtained during plasma-chemical synthesis of industrially manufactured microcrystalline TiNi. Experiments on plasma-chemical synthesis were carried out by recondensation of ultrafine and nanocrystalline powders in a rotating cylinder of gaseous nitrogen. X- ray phase analysis and high-resolution transmission electron microscopy (HR TEM) showed the presence of refractory titanium compounds with nitrogen and metallic nickel, which are part of the core-shell structures, including the metastable, highly deformed complex nitride Ti0.7Ni0 . 3N of hexagonal modification. HR TEM studies showed the localization of phases determined by X-ray diffraction and confirmed the “core-shell” structure on the example of nanocrystalline TiN-Ni fraction. Based on the experimental results, we have developed a model of crystallization of TiN-Ni “core-shell“ structures under the conditions of a rotating cylinder of gaseous nitrogen, where the crystallization rate is 105 ◦C/s.

Об авторах

Yu. Avdeeva
Institute of Solid State Chemistry
Россия


I. Luzhkova
Institute of Solid State Chemistry
Россия


A. Ermakov
Institute of Solid State Chemistry
Россия


Список литературы

1. Liu F., Yang X., Dang D., Tian X. Engineering of hierarchical and three-dimensional architectures constructed by titanium nitride nanowire assemblies for efficient electrocatalysis. ChemElectroChem, 2019, 6, P. 2208-2214.

2. Wang D., Xue C., Cao Y., Zhao J. Microstructure design and preparation of Al2O3/TiC/TiN micro-nano-composite ceramic tool materials based on properties prediction with finite element method. Ceram.Int., 2018, 44, P. 5093-5101.

3. Cui X., Wang D., Guo J. Effects of material microstructure and surface microscopic geometry on the performance of ceramic cutting tools in intermittent turning. Ceram.Int., 2018, 44, P. 8201-8209.

4. Zhang J., Li S., Lu C., Sun C., Pu S., Xue Q., Lin Y., Huang M. Anti-wear titanium carbide coating on low-carbon steel by thermo-reactive diffusion. Surf. Coat. Technol., 2019, 364, P. 265-272.

5. Sarycheva A., Polemi A., Liu Y., Dandekar K., Anasori B., Gogotsi Y. 2D titanium carbide (MXene) for wireless communication. Science Advances, 2018, 4(9).

6. Drozdov V.O., Cherepanov A.N., Chesnokov A.E., Smirnov A.V. Studying the production of modifying composite powders by plasma processing. AIP Conference Proceedings, 2018, 2053, 030010.

7. Simonenko E.P., Simonenko N.P., Sevastyanov V.G., Kuznetsov N.T. ZrB2/HfB2-SiC ceramics modified by refractory carbides: an overview.Russ. J. Inorg. Chem., 2019, 64, P. 1697-1725.

8. Hammouti S., Holybee B., Zhu W., Allain J. P., Jurczyk B., Ruzic D.N. Titanium nitride formation by a dual-stage femtosecond laser process. Appl. Phys. A, 2018, 124, 411.

9. Guo W.-P., Mishra R., Cheng C.-W., Wu B.-H., Chen L.-J., Lin M.-T., Gwo S. Titanium nitride epitaxial films as a plasmonic material platform: alternative to gold. ACS Photonics, 2019, 6(8), P. 1848-1854.

10. Corradetti S., Carturana M., Maggionia G., Franchin G., Colombo P., Andrighetto A. Nanocrystalline titanium carbide/carbon composites as irradiation targets for isotopes production. Ceram.Int., 2020, 46(7), P. 9596-9605.

11. Huang H., Feng T., Gan Y., Fang M., Xia Y., Liang C., Tao X., Zhang W. TiC/NiO Core/Shell nanoarchitecture with battery-capacitive synchronous lithium storage for high-performance lithium-Ion battery. ACS Appl. Mater.Interfaces, 2015, 7(22), P. 11842-11848.

12. Zhang Y., Song R., Pei Y., Wen E., Zhao Z. The formation of TiC-NbC core-shell structure in hypereutectic high chromium cast iron leads to significant refinement of primary M7C3. J. Alloys Compd., 2020, 824, 153806.

13. Dong S., Chen X., Gu L., Zhou X., Wang H., Liu Z., Han P., Yao J., Wang L., Cui G., Chen L. TiN/VN composites with core/shell structure for supercapacitors. Mater. Res. Bull., 2011, 46(6), P. 835-839.

14. Ding X.-Y., Luo L.-M., Huang L.-M., Luo G.-N., Zhu X.-Y., Cheng J.-G., Wu Y.-C. Preparation of TiC/W core-shell structured powders by one-step activation and chemical reduction process. J. Alloys Compd., 2015, 619(15), P. 704-708.

15. Xia M., Yan Q., Xu L., Zhu L., Guo H., Ge C. Synthesis of TiC/W core-shell nanoparticles by precipitate-coating process. J. Nucl. Mater., 2012, 430(1-3), P. 216-220.

16. Chalmers B. Principles of solidification. John Wiley and Sons, Springer, New York, Dordrecht, Heidelberg, London, 1964, 319 p.

17. Zalite I., Grabis J., Palcevskis E., Herrmann M. Plasma processed nanosized-powders of refractory compounds for obtaining fine-grained advanced ceramics. IOP Conf. Ser.: Mater. Sci. Eng., 2011, 18, 062024.

18. Filkov M., Kolesnikov A. Plasmachemical synthesis of nanopowders in the system Ti(O,C,N) for material structure modification. Journal of Nanoscience, 2016, 2016, 1361436.

19. Polak L. Elementary chemical processes and kinetics in a non-equilibrium and quasi-equilibrium plasma. Pure Appl. Chem., 1974, 39(3), P. 307-342.

20. Storozhenko P.A., Guseinov Sh.L., Malashin S.I. Nanodispersed Powders: Synthesis Methods and Practical Applications. Nanotech. in Russia, 2009, 4, P. 262-274.

21. Luo H.L., Duwez P.E. Solid solutions of rhodium with copper and nickel. Journal of the Less-Common Metals, 1964, 6, P. 248-249.

22. Scho¨nberg N. The tungsten carbide and nickel arsenide structures. Acta Metall., 1954, 2, P. 427-432.

23. Fultz B., Howe J.M. Transmission electron microscopy and diffractometry of materials, 3rd ed. Springer, Berlin, Heidelberg, 2008, 758 p.

24. Goryczka T., Morawiec H. Structure studies of the R-phase using X-ray diffraction methods. J. Alloys Compd., 2004, 367, P. 137-141.

25. Van Vucht J.H.N. Influence of radius ratio on the structure of intermetallic compounds of the AB3 type. Journal of the Less-Common Metals, 1966, 11, P. 308-322.

26. Kovba L.M., Trunov V.K. X-ray phase analysis. MGU, Moscow, 1976, 232 p. (in Russ.)

27. Kosolapova T.Ya. Handbook of high temperature compounds: properties, production, applications. CRC Press, New York, Washington, Philadelphia, London, 1990, 958 p.

28. Hemenger P., Weik H. On the existence of hexagonal nickel. Acta Crystallogr., 1956, 19, P. 690-691.

29. Ermakov A.N., Luzhkova I.V., Avdeeva Yu.A., Murzakaev A.M., Zainulin Yu.G., Dobrinsky E.K. Formation of complex titanium-nickel nitride Ti0.7Ni0.3N in the “core-shell” structure of TiN - Ni.Int. J. Refract. Met. Hard Mater., 2019, 84, 104996.

30. Barin I. Thermochemical data of pure substances. Third edition. VCH, Weinheim, New York, Base1, Cambridge, Tokyo, 1995, 2003 p.

31. Otsuka K. Shimizu K. Suzuki Yu. Shape memory alloys. Ed. Funakubo X. Metallurgiya, Moscow, 1990, 224 p. (In Russ.)

32. Gusev A.I. Nonstoichiometry, disorder, short-range and long-range order in a solid. FIZMATLIT, Moscow, 2007, 856 p. (In Russ.)

33. Samokhin A.V., Polyakov S.N., Alekseev N.V., Astashov A.G., Tsvetkov Yu.V. Simulation of the process of nanopowder synthesis in a jet-type plasma reactor. I. Statement of the problem and verification of the model. Fizika i khimiya obrabotki materialov, 2013, 6, P. 40-46. (In Russ.)

34. Samokhin A.V., Polyakov S.N., Alekseev N.V., Astashov A.G., Tsvetkov Yu.V. Simulation of the process of nanopowder synthesis in a jet-type plasma reactor. II. Formation of nanoparticles. Fizika i khimiya obrabotki materialov, 2014, 3, P. 2-17. (In Russ.)

35. Shiryaeva L.S., Gorbuzova A.K., Galevsky G.V. Production and application of titanium carbide (assessment, trends, forecasts). Nauchno-tekhnicheskiye vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta, 2014, 2(195), P. 100-107. (In Russ.)

36. Krzhizhanovsky R.E., Stern Z.Yu. Thermophysical properties of non-metallic materials (carbides). Handbook, Energiya, Leningrad, 1976, 120 p. (In Russ.)


Рецензия

Для цитирования:


 ,  ,   . Наносистемы: физика, химия, математика. 2022;13(2):212-219. https://doi.org/10.17586/2220-8054-2022-13-2-212-219

For citation:


Avdeeva Yu.A., Luzhkova I.V., Ermakov A.N. Mechanism of formation of nanocrystalline particles with core-shell structure based on titanium oxynitrides with nickel in the process of plasma-chemical synthesis of TiNi in a low-temperature nitrogen plasma. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(2):212-219. https://doi.org/10.17586/2220-8054-2022-13-2-212-219

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)