Conditions for the existence of bound states of a two-particle Hamiltonian on a three-dimensional lattice
https://doi.org/10.17586/2220-8054-2022-13-3-237-244
Abstract
The Hamiltonian h of the system of two quantum particles moving on a 3-dimensional lattice interacting via some attractive potential is considered. Conditions for the existence of eigenvalues of the two-particle Schrödinger operator hμ(k), k∈T3, μ∈R associated to the Hamiltonian h, are studied depending on the energy of the particle interaction μ∈R and total quasi-momentum k∈T3 (T3 - three-dimensional torus).
About the Authors
M. I. MuminovRussian Federation
A. M. Khurramov
Russian Federation
I. N. Bozorov
Russian Federation
References
1. Bloch I., Dalibard J., and Nascimbene S. Quantum simulations with ultracold quantum gases, Nature Physics, 2012, 8. P. 267-276.
2. Jaksch D., Zoller P. The cold atom Hubbard toolbox. Annals of Physics, 2005, 315. P. 52-79.
3. Lewenstein M., Sanpera A., Ahu nger V. Ultracold Atoms in Optical Lattices: Simulating Quantum Many-body Systems. Oxford University, Press, 2012.
4. Gullans M., Tiecke T.G., Chang D.E., Feist J., Thompson J.D., Cirac J.I., Zoller P., Lukin M.D. Nanoplasmonic Lattices for Ultracold Atoms. Phys. Rev. Lett., 2012, 109, P. 235309.
5. Hecht E. Optics. Addison-Wesley, Reading, MA. 1998.
6. Murphy B., Hau L.V. Electro-optical nanotraps for neutral atoms. Phys. Rev. Lett., 2009, 102, P. 033003.
7. N.P. de Leon, Lukin M D., and Park H. Quantum plasmonic circuits. IEEE J. Sel. Top. Quantum Electron., 2012, 18, P. 1781-1791.
8. Faria da Veiga P. A., Ioriatti L., O’Carroll M. Energy momentum spectrum of some two-particle lattice Schro¨dinger Hamiltonians. Physical Review E, 2006, 66, 016130.
9. Muminov M. E. Positivity of the two-particle Hamiltonian on a lattice. Theor. Math. Phys., 2007, 153(3), P. 1671-1676.
10. Bagmutov A. S., Popov I. Y. Window-coupled nanolayers: window shape in uence on one-particle and two-particle eigenstates. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11(6), P. 636-641.
11. Hiroshima F., Sasaki I., Shirai T., Suzuki A. Note on the spectrum of discrete Schro¨dinger operators. Journal of Math-for-Industry, 2012, 4, P. 105-108.
12. Higuchi Y., Matsumot T., Ogurisu O. On the spectrum of a discrete Laplacian on Z with nitely supported potential. Linear and Multilinear Algebra, 2011, 8, P. 917-927.
13. Albeverio S., Lakaev S. N., Makarov K. A., Muminov Z. I. The Threshold effects for the two-particle Hamiltonians.Communications in Mathematical Physics, 2006, 262, P. 91-115.
14. Muminov M. E., Khurramov A. M. Spectral properties of a two-particle Hamiltonian on a lattice. Theor. Math. Phys., 2013, 177(3), P. 482-496.
15. Muminov M. E., Khurramov A. M. Multiplicity of virtual levels at the lower edge of the continuous spectrum of a two-particle Hamiltonian on a lattice. Theor. Math. Phys., 2014, 180(3), P. 329-341.
16. Bozorov I. N., Khurramov A. M. On the number of eigenvalues of the lattice model operator in one-dimensional case. Lobachevskii Journal of Mathematics, 2022, 43(2), P. 353-365.
17. Muminov M.I., Khurramov A. M. Spectral properties of a two-particle hamiltonian on a d-dimensional lattice. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7(5), P. 880-887.
18. Lakaev S. N., Bozorov I. N. The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice. Theor. Math. Phys., 2009, 158(3), P. 360-376.
19. Abdullaev J. I., Khalkhuzhaev A. M., Usmonov L. S. Monotonicity of the eigenvalues of the two-particle Schro¨dinger operatoron a lattice. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12(6), P. 657-663.
20. Reed M., Simon B. Methods of modern Mathematical Physics. Vol.4. Analysis of Operators. Academic Press, London, 1980, 404 p.
Review
For citations:
Muminov M.I., Khurramov A.M., Bozorov I.N. Conditions for the existence of bound states of a two-particle Hamiltonian on a three-dimensional lattice. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(3):237-244. https://doi.org/10.17586/2220-8054-2022-13-3-237-244