Assessment of structural changes in proteins and surrounding water molecules in solution according to SAXS and MD data
https://doi.org/10.17586/2220-8054-2022-13-3-274-284
Abstract
The SASPAR program for calculation of SAXS of proteins in solution uses trajectories of molecular dynamics (MD) and an explicit solvent model. The program allows one to take into account real interactions of solvent molecules both between each other and with the protein molecule. The previously developed SAS-CUBE program (the “cube method”) is also used, it assumes that the protein structures in crystal and in solution coincide, and the water surrounding the proteins is considered as a homogeneous continuum. Using these programs, SAXS curves were calculated for 18 proteins of different molecular weights and then compared with one another and with the corresponding experimental scattering curves. “Vacuum” SAXS curves (i.e., without taking into account the surrounding water) were also calculated for each protein for two approaches: a) based on the coordinates of protein atoms in crystal and b) based on the coordinates of protein atoms for each MD frame with further averaging of the intensities from all the frames. 1) It was shown that for the 14 single-domain proteins considered, the “vacuum” scattering curves calculated by two methods coincide well for almost each protein. Hence, the structure of the studied proteins in a solution is similar to their structure in a crystal and, therefore, the presence of the surrounding water molecules does not alter the protein structure itself signi cantly. The SASPAR- and SASCUBE-curves coincide well only in two cases (i.e., water is only slightly structured near the protein surface), but in the other cases these curves are markedly different, which indicates the structuredness of the water near the protein surface, although to a different extent. 2) It was shown that for the 4 multi-domain proteins considered, their “vacuum” scattering curves, calculated with the two methods indicated above, differ noticeably, which is an evidence that their crystalline and “water” struc- tures are different. It was also shown that the most of the calculated curves coincide well with the experimental ones.
About the Authors
A. V. SmirnovRussian Federation
A. M. Semenov
Russian Federation
Yu. B. Porozov
Russian Federation
B. A. Fedorov
Russian Federation
References
1. Ninio J., Luzzati V., Yaniv M.Comparative Small-Angle X-Ray Scattering Studies on Unacylated, Acylated and Cross-Linked Escherichia Coli Transfer RNAIVal. Journal of Molecular Biology, 1972, 71(2), P. 217-229.
2. Fedorov B.A., Denesyuk A.I. Large-Angle X-Ray Diffuse Scattering, a New Method for Investigating Changes in the Conformation of Globular Proteins in Solutions. J. Appl. Cryst., 1978, 11(5), P. 473-477.
3. Pavlov M.Yu., Fedorov B.A. Improved Technique for Calculating X-Ray Scattering Intensity of Biopolymers in Solution: Evaluation of the Form, Volume, and Surface of a Particle. Biopolymers, 1983, 22(6), P. 1507-1522.
4. Valentini E., Kikhney A.G., Previtali G., Jeffries C.M., Svergun D.I. SASBDB, a Repository for Biological Small-Angle Scattering Data. Nucleic Acids Res., 2015, 43(D1), P. D357-D363.
5. Hura G.L., Menon A.L., Hammel M., Rambo R.P., Poole II F.L., Tsutakawa S.E., Jenney Jr F.E., Classen S., Frankel K.A., Hopkins R.C., Yang S., Scott J.W., Dillard B.D., Adams M.W.W., Tainer J.A. Robust, High-Throughput Solution Structural Analyses by Small Angle X-Ray Scattering (SAXS). Nat Methods, 2009, 6(8), P. 606-612.
6. Fedorov B.A., Smirnov A.V., Yaroshenko V.V., Porozov Yu.B. SASCUBE: An Updated Method of Cubes for Calculation of the Intensity of X-Ray Scattering by Biopolymers in Solution. BIOPHYSICS, 2019, 64(1), P. 38-48.
7. https://sourceforge.net/projects/sascube
8. Svergun D., Barberato C., Koch M.H.J. CRYSOL - a Program to Evaluate X-Ray Solution Scattering of Biological Macromolecules from Atomic Coordinates. J. Appl. Cryst., 1995, 28(6), P. 768-773.
9. Bardhan J., Park S., Makowski L. SoftWAXS: A Computational Tool for Modeling Wide-Angle X-Ray Solution Scattering from Biomolecules. Journal of applied crystallography, 2009, 42, P. 932-943.
10. Liu H., Hexemer A., Zwart P.H. The Small Angle Scattering ToolBox (SASTBX): An Open-Source Software for Biomolecular Small-Angle Scattering. J. Appl. Cryst., 2012, 45(4), P. 587-593.
11. Svergun D.I., Richard S., Koch M.H.J., Sayers Z., Kuprin S., Zaccai G. Protein Hydration in Solution: Experimental Observation by x-Ray and Neutron Scattering. PNAS, 1998, 95(5), P. 2267-2272.
12. Schneidman-Duhovny D., Hammel M., Tainer J.A., Sali A. FoXS, FoXSDock and MultiFoXS: Single-State and Multi-State Structural Modeling of Proteins and Their Complexes Based on SAXS Pro les. Nucleic Acids Research, 2016, 44(W1), P. W424-W429.
13. Park S., Bardhan J.P., Roux B., Makowski L. Simulated X-Ray Scattering of Protein Solutions Using Explicit-Solvent Models. J. Chem. Phys., 2009, 130(13), 134114.
14. Oroguchi T., Ikeguchi M. MD-SAXS Method with Nonspherical Boundaries. Chemical Physics Letters, 2012, 541, P. 117-121.
15. Ko nger J., Hummer G. Atomic-Resolution Structural Information from Scattering Experiments on Macromolecules in Solution. Phys. Rev. E, 2013, 87(5), 052712.
16. Knight C.J., Hub J.S. WAXSiS: A Web Server for the Calculation of SAXS/WAXS Curves Based on Explicit-Solvent Molecular Dynamics. Nucleic Acids Research, 2015, 43(W1), P. W225-W230.
17. Grishaev A., Guo L., Irving T., Bax A. Improved Fitting of Solution X-Ray Scattering Data to Macromolecular Structures and Structural Ensembles by Explicit Water Modeling. J. Am. Chem. Soc., 2010, 132(44), P. 15484-15486.
18. Chen P., Hub J.S. Validating Solution Ensembles from Molecular Dynamics Simulation by Wide-Angle X-Ray Scattering Data. Biophysical Journal, 2014, 107(2), P. 435-447.
19. https://github.com/andy-biochem/saspar2
20. Berman H., Battistuz T., Bhat T., Bluhm W., Bourne P., Burkhardt K., Feng Z., Gilliland G., Iype L., Jain S., Fagan P., Marvin J., Padilla D., Ravichandran V., Schneider B., Thanki N. Weissig, H.; Westbrook, J.; Zardecki, C. The Protein Data Bank. Acta crystallographica. Section D, Biological crystallography, 2002, 58, P. 899-907.
21. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucleic Acids Research, 2000, 28(1), P. 235-242.
22. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L.Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys., 1983, 79(2), P. 926-935.
23. Bowers K.J., Chow E., Xu H., Dror R.O., Eastwood M.P., Gregersen B.A., Klepeis J.L., Kolossvary I., Moraes M.A., Sacerdoti F.D., Salmon J.K., Shan Y., Shaw D.E. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In In SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, ACM Press, 2006.
24. Abraham M.J., Murtola T., Schulz R., Pa´ll S., Smith J.C., Hess B., Lindahl E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX, 2015, 1-2, P. 19-25.
25. Banks J.L., Beard H.S., Cao Y., Cho A.E., Damm W., Farid R., Felts A.K., Halgren T.A., Mainz D.T., Maple J.R., Murphy R., Philipp D.M., Repasky M.P., Zhang L.Y., Berne B.J., Friesner R.A., Gallicchio E., Levy R.M.Integrated Modeling Program, Applied Chemical Theory (IMPACT). Journal of Computational Chemistry, 2005, 26(16), P. 1752-1780.
26. Hoover W.G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A, 1985, 31(3), P. 1695-1697.
27. Martyna G.J., Tobias D.J., Klein M.L. Constant Pressure Molecular Dynamics Algorithms. J. Chem. Phys., 1994, 101(5), P. 4177-4189.
28. Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field. Proteins: Structure, Function, and Bioinformatics, 2010, 78(8), P. 1950-1958.
29. Parrinello M., Rahman A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. Journal of Applied Physics, 1981, 52(12), P. 7182-7190.
30. Gureev M.A., Kadochnikov V.V. Porozov Yu.B. Molekulyarnyi doking i ego veri katsiya v kontekste virtual’nogo skrininga [Molecular docking and its veri cation in the context of virtual screening]. St. Petersburg: ITMO University, 2018 (In Russ.)
31. https://github.com/andy-biochem/saspar2/tree/master/gmx prot
32. https://github.com/andy-biochem/saspar2/tree/master/gmx water
33. Vainshtein B.K., Vainshtein B.K. Diffraction of X-Rays by Chain Molecules. Elsevier, 1966.
34. P.A. Kienzle Periodictable V1.5.0. Zenodo. https://doi.org/10.5281/zenodo.840347
35. Lee B., Richards F.M. The Interpretation of Protein Structures: Estimation of Static Accessibility. J. Mol. Biol., 1971, 55(3), P. 379-400.
36. Bondi A.A. Physical Properties of Molecular Crystals, Liquids, and Glasses. Wiley, 1968.
37. Debye P. Zerstreuung von Ro¨ntgenstrahlen. Annalen der Physik, 1915, 351(6), P. 809-823.
38. Guinier A. La diffraction des rayons X aux tre`s petits angles: application a` l’e´tude de phe´nome`nes ultramicroscopiques. Ann. Phys., 1939, 11(12), P. 161-237.
39. Fedorov B.A., Ptitsyn O.B., Voronin L.A. X-Ray Diffuse Scattering of Globular Protein Solutions: Consideration of the Solvent In uence. FEBS Lett, 1972, 28(2), P. 188-190.
40. Guinier A., Fournet G., Yudowitch K.L. Small-Angle Scattering of X-Rays, 1955.
41. Canciani A., Catucci G., Forneris F. Structural Characterization of the Third Scavenger Receptor Cysteine-Rich Domain of Murine Neurotrypsin. Protein Science, 2019, 28(4), P. 746-755.
42. Grant T.D., Luft J.R., Wol ey J.R., Tsuruta H., Martel A., Montelione G.T., Snell E.H. Small Angle X-Ray Scattering as a Complementary Tool for High-Throughput Structural Studies. Biopolymers, 2011, 95(8), P. 517-530.
43. Walden P.M., Whitten A.E., Premkumar L., Halili M.A., Heras B., King G.J., Martin J.L. The Atypical Thiol-Disul de Exchange Protein α-DsbA2 from Wolbachia Pipientis Is a Homotrimeric Disul de Isomerase. Acta. Cryst. D, 2019, 75(3), P. 283-295.
44. Graewert M.A., Da Vela S., Gra¨wert T.W., Molodenskiy D.S., Blanchet C.E., Svergun D.I., Jeffries C.M. Adding Size Exclusion Chromatography (SEC) and Light Scattering (LS) Devices to Obtain High-Quality Small Angle X-Ray Scattering (SAXS) Data. Crystals, 2020, 10(11), P. 975.
45. Haataja T.J.K., Bernardi R.C., Lecointe S., Capoulade R., Merot J., Pentika¨inen U. Non-Syndromic Mitral Valve Dysplasia Mutation Changes the Force Resilience and Interaction of Human Filamin A. Structure, 2019, 27(1), P. 102-112.e4
46. Trewhella J., Duff A.P., Durand D., Gabel F., Guss J.M., Hendrickson W.A., Hura G.L., Jacques D.A., Kirby N.M., Kwan A.H., Pe´rez J., Pollack L., Ryan T.M., Sali A., Schneidman-Duhovny, D., Schwede T., Svergun D.I., Sugiyama M., Tainer J.A., Vachette P., Westbrook J., Whitten A.E. Publication Guidelines for Structural Modelling of Small-Angle Scattering Data from Biomolecules in Solution: An Update. Acta Cryst D, 2017, 73(9), P. 710-728.
47. Hub J.S.Interpreting Solution X-Ray Scattering Data Using Molecular Simulations. Current Opinion in Structural Biology, 2018, 49, P. 18-26.
48. Brosey C.A., Tainer J.A. Evolving SAXS Versatility: Solution X-Ray Scattering for Macromolecular Architecture, Functional Landscapes, and Integrative Structural Biology. Curr Opin Struct Biol, 2019, 58, P. 197-213.
49. Sikic K., Tomic S., Carugo O. Systematic Comparison of Crystal and NMR Protein Structures Deposited in the Protein Data Bank. Open Biochem J, 2010, 4, P. 83-95.
50. Everett J.K., Tejero R., Murthy S.B.K., Acton T.B., Aramini J.M., Baran M.C., Benach J., Cort J.R., Eletsky A., Forouhar F., Guan R., Kuzin A.P., Lee H.W., Liu G., Mani R., Mao B., Mills J.L., Montelione A.F., Pederson K., Powers R., Ramelot T., Rossi P., Seetharaman J., Snyder D., Swapna G.V.T., Vorobiev S.M., Wu Y., Xiao R., Yang Y., Arrowsmith C.H., Hunt J.F., Kennedy M.A., Prestegard J.H., Szyperski T., Tong L., Montelione G.T. A Community Resource of Experimental Data for NMR / X-Ray Crystal Structure Pairs. Protein Science, 2016, 25(1), P. 30-45.
51. Leman J.K., D’Avino A.R., Bhatnagar Y., Gray J.J.Comparison of NMR and Crystal Structures of Membrane Proteins and Computational Re nement to Improve Model Quality. Proteins, 2018, 86(1), P. 57-74.
52. Tjioe E., Heller W.T. ORNL SAS: Software for Calculation of Small-Angle Scattering Intensities of Proteins and Protein Complexes. J. Appl. Cryst., 2007, 40(4), P. 782-785.
53. Poitevin F., Orland H., Doniach S., Koehl P., Delarue M. AquaSAXS: A Web Server for Computation and Fitting of SAXS Pro les with Non-Uniformally Hydrated Atomic Models. Nucleic Acids Research, 2011, 39(suppl 2), P. W184-W189.
54. Schneidman-Duhovny D., Hammel M., Tainer J.A., Sali A. Accurate SAXS Pro le Computation and Its Assessment by Contrast Variation Experiments. Biophysical Journal, 2013, 105(4), P. 962-974.
55. Virtanen J.J., Makowski L., Sosnick T.R., Freed K.F. Modeling the Hydration Layer around Proteins: Applicationsto Small- and Wide-Angle X-Ray Scattering. Biophysical Journal, 2011, 101(8), P. 2061-2069.
Review
For citations:
Smirnov A.V., Semenov A.M., Porozov Yu.B., Fedorov B.A. Assessment of structural changes in proteins and surrounding water molecules in solution according to SAXS and MD data. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(3):274-284. https://doi.org/10.17586/2220-8054-2022-13-3-274-284