Ladder operators approach to representation classi cation problem for Jordan-Schwinger image of su(2) algebra
https://doi.org/10.17586/2220-8054-2022-13-3-299-307
Abstract
The eigenvalues of the complete commuting set of self-adjoint operators determine the classi cation of states. We construct a classi cation for the image of the Jordan-Schwinger mapping of the su (2) algebra. We use the ladder operator approach to construct a canonical basis of irreducible representations and de ne the self-adjoint operators of the complete commuting set.
About the Authors
G. V. TushavinRussian Federation
E. V. Zaitseva
Russian Federation
A. I. Trifanov
Russian Federation
References
1. Williams C.L., Pandya N.N., Bodmann B.G., Kouri D.J. Coupled supersymmetry and ladder structures beyond the harmonic oscillator. Molecular Physics, 2018, 116 (19-20), P. 2599-2612.
2. Hoffmann S.E., Hussin V., Marquette I., Zhang Y.-Z. Ladder operators and coherent states for multi-step supersymmetric rational extensions of the truncated oscillator. J. Math. Phys., 2019, 60, 052105.
3. Bosso P., Das S. Generalized ladder operators for the perturbed harmonic oscillator. Ann. of Phys., 2018, 396, P. 254-265.
4. Aouda K., Kanda N., Naka S., Toyoda H. Ladder Operators in Repulsive Harmonic Oscillator with Application to the Schwinger Effect. Phys. Rev. D, 2020, 102, 025002.
5. Weyl H., Robertson H.P. The theory of groups and quantum mechanics, Dover Publications, New York, 1950.
6. Perelomov A.M. Generalized Coherent States and Their Applications, Springer, Berlin, 1986.
7. Biedenharn L.C., Louck J.D. Angular momentum in quantum physics, Cambridge univerisity press, Cambridge, 1984.
8. Miroshnichenko G.P., Kiselev A.D., Trifanov A.I., Gleim A.V. Algebraic approach to electro-optic modulation of light: exactly solvable multimode quantum model. J. Opt. Soc.Am. B, 2017, 34 (6), P. 1177-1190.
9. Gelfand I.D., Shapiro Z.Ya., Minlos R.A. Representations of the Rotation and Lorentz Groups and Their Applications, The Pergamon Press, Oxford, 1963.
10. Tushavin G.V., Trifanov A.I., Trifanova E.S., Shipitsyn I.A. Structure of invariant subspaces of the rotation group image under the Jordan mapping. 2019 Days on Diffraction (DD), 2019, St. Petersburg, Russia, P. 216-220.
Review
For citations:
Tushavin G.V., Zaitseva E.V., Trifanov A.I. Ladder operators approach to representation classi cation problem for Jordan-Schwinger image of su(2) algebra. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(3):299-307. https://doi.org/10.17586/2220-8054-2022-13-3-299-307