Double perovskite oxides La2NiMnO6 and La2Ni0.8Fe0.2MnO6 for inorganic perovskite solar cells
https://doi.org/10.17586/2220-8054-2022-13-3-314-319
Abstract
Nanopowders of La2Ni0.8Fe0.2MnO6 and La2NiMnO6 double perovskite oxides were synthesized by glycine-nitrate combustion method. The obtained materials were characterized using X-ray diffraction, scanning electron microscopy and optical measurements. Thin nanostructured layers based on the prepared materials were used as light absorbing layers for fabrication of inorganic perovskite solar cells (PSCs). Electron transport layers for the PSCs were prepared using TiO2 and ZrO2 nanostructured layers. The best performance of 3.7 % under AM1.5G illumination was obtained for the PSC structure glass/FTO/ZrO2/La2Ni0.8Fe0.2MnO6/Spiro-MeOTAD/Au.
About the Authors
S. S. KozlovRussian Federation
O. V. Alexeeva
Russian Federation
A. B. Nikolskaia
Russian Federation
O. I. Shevaleevskiy
Russian Federation
D. D. Averkiev
Russian Federation
P. V. Kozhuhovskaya
Russian Federation
O. V. Almjasheva
Russian Federation
L. L. Larina
Russian Federation
References
1. Shubbak M.H. Advances in solar photovoltaics: Technology review and patent trends. Renew. Sustain. Energ. Rev., 2019, 115, 109383.
2. Green M. Photovoltaic technology and visions for the future. Progr. Energ., 2019, 1 (1), 013001.
3. Lu H., Krishna A., et al.Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience, 2020, 23 (8), 101359.
4. Tejeda A., Choy W.C.H., Deleporte E., Graetzel M. Hybrid perovskites for photovoltaics and optoelectronics. J. Phys. D: Appl. Phys., 2020, 53 (7), 070201
5. Ansari M.I.H., Qurashi A., Nazeeruddin M.K. Frontiers, opportunities, and challenges in perovskite solar cells: a critical review. J. Photochem. Photobiol. C: Photochem. Rev., 2018, 35, P. 1-24.
6. Green M.A., Dunlop E.D., et al. Solar cell ef ciency tables (version 58). Prog. Photovolt.: Res. Appl., 2021, 29, P. 657-667.
7. Park N.G. Research direction toward scalable, stable, and high ef ciency perovskite solar cells. Adv. Energy Mater., 2020, 10 (13), 1903106.
8. Bisquert J., Juarez-Perez E.J. The causes of degradation of perovskite solar cells. J. Phys. Chem. Lett., 2019, 10 (19), P. 5889-5891.
9. Wang H.-Q., Wang S., et al. Understanding degradation mechanisms of perovskite solar cells due to electrochemical metallization effect. Sol. Energ. Mater. Sol. Cell., 2021, 230, 111278.
10. Schileo G., Grancini G. Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. J. Mater. Chem. C, 2021, 9, P. 67-76.
11. Su P., Liu Y., et al. Pb-based perovskite solar cells and the underlying pollution behind clean energy: dynamic leaching of toxic substances from discarded perovskite solar cells. J. Phys. Chem. Lett., 2020, 11, P. 2812-2817.
12. Yin W.-J., Weng B., et al. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ. Sci., 2019, 12, P. 442-462.
13. Lan C., Zhao S.,et al. Investigation on structures, band gaps, and electronic structures of lead free La2NiMnO6 double perovskite materials for potential application of solar cell. J. Alloy.Comp., 2016, 655, P. 208-214.
14. Sheikh M.S., Ghosh D., et al. Lead free double perovskite oxides Ln2NiMnO6 (Ln = La, Eu, Dy, Lu), a new promising material for photovoltaic application. Mater. Sci. Eng. B, 2017, 226, P. 10-17.
15. Kumar M., Raj A., Kumar A., Anshul A. Theoretical evidence of high power conversion ef ciency in double perovskite solar cell device. Opt. Mater., 2021, 111, 110565.
16. Xu X., Zhong Y., Shao Z. Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis. Trends Chem., 2019, 1 (4), P. 410-424.
17. Afroze S., Karim A.H.,et al. Latest development of double perovskite electrode materials for solid oxide fuel cells: a review. Front. Energ., 2019, 13 (4), P. 770-797.
18. Shi J., Gan H., Wang C., Shen Q. Fe-doping effect on magnetic properties of La2CoMnO6 ceramics prepared by plasma activated sintering. J. Eur. Ceram. Soc., 2021, 41, P. 6516-6522.
19. Popkov V.I., Almjasheva O.V., et al. Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. J. Mater. Sci. Mater. Electron., 2017, 28, P. 7163-7170.
20. Ito S., Chen P., et al. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitized solar cells. Prog. Photovolt.: Res. Appl., 2007, 15, P. 603-612.
21. Nikolskaia A.B., Kozlov S.S., et al. Cation doping of La2NiMnO6 complex oxide with the double perovskite structure for photovoltaic applications.Russ. J. Inorg. Chem., 2022, 67 (6), P. 921-925.
22. Vildanova M.F., Nikolskaia A.B., Kozlov S.S., Shevaleevskiy O.I. Charge transfer mechanisms in multistructured photoelectrodes for perovskite solar cells. J. Phys. Conf., 2020, 1697 (1), 012187.
23. Sheikh M.S., Sakhya A.P., Dutta A., Sinha T.P. Light induced charge transport in La2NiMnO6 based Schottky diode. J. Alloy.Comp., 2017, 727, P. 238-245.
24. Hossain A., Atique Ullah A.K.M., Guin P.S., Roy S. An overview of La2NiMnO6 double perovskites: synthesis, structure, properties, and applications. J. of Sol-Gel Science and Technology, 2020, 93 (3), P. 479-494.
25. Tauc J., Grigorovici R., Vancu A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi, 1966, 15, P. 627-637.
26. Park N.-G., Segawa H. Research direction toward theoretical ef ciency in perovskite solar cells. ACS Photonics, 2018, 5 (8), P. 2970-2977.
27. Yang Z., Rajagopal A., Jen A.K.Y. Ideal bandgap organic-inorganic hybrid perovskite solar cells. Adv. Mater., 2017, 29 (47), 1704418.
Review
For citations:
Kozlov S.S., Alexeeva O.V., Nikolskaia A.B., Shevaleevskiy O.I., Averkiev D.D., Kozhuhovskaya P.V., Almjasheva O.V., Larina L.L. Double perovskite oxides La2NiMnO6 and La2Ni0.8Fe0.2MnO6 for inorganic perovskite solar cells. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(3):314-319. https://doi.org/10.17586/2220-8054-2022-13-3-314-319