Electrochemical performance of r-graphene oxide based MnO2 nanocomposite for supercapacitor
https://doi.org/10.17586/2220-8054-2022-13-3-320-330
Abstract
In this study, we improved the capacitance of carbon based reduced graphene oxide (rGO) and metal oxide based MnO2 by preparing nanocomposites of rGO/MnO2 nanocomposite using chemical synthesis method. The prepared nanoparticles and nanocomposites are characterized by FTIR spectroscopy, XRD, PL spectroscopy and FESEM with EDAX spectroscopy. FTIR studies disclose the characteristic chemical bonding between the respective materials. The FESEM images demonstrate that the surface structure of rGO and MnO2 can be easily tuned by forming the composite of rGO/MnO2 materials leading to excellent process ability of the system. The super capacitive behaviors of nanocomposites are evaluated using cyclic voltammetry and galvanostatic charge-discharge techniques. The specific capacitance of rGO/MnO2 composite is high compared to that of MnO2 nanoparticle. In addition, impedance measurements of the MnO2 nanoparticles and rGO/MnO2 electrodes are executed proposing that the rGO/MnO2 composite electrodes are promising materials for super capacitor (186.6 Fg-1).
About the Authors
S. KalaiarasiRussian Federation
S. Shyamala
Russian Federation
M. Kavitha
Russian Federation
C. Vedhi
Russian Federation
R. R. Muthuchudarkodi
Russian Federation
References
1. Li Q., Zhan Z., Jin S., Tan B. Wettable Magnetic hyper cross linked microporous Nanoparticle as an ef cient adsorbent for water treatment. Chem. Eng. J., 2017, 326, P. 109-116.
2. Chandra V., Park J., et al. Water dispersible magnetite reduced graphene oxide composites for arsenic removal. ACS Nano, 2010, 4 (7), P. 3979-3986.
3. Wanlu Yang, Zan Gao, et al. Synthesis of reduced graphene nanosheet/urchin-like manganese dioxide composite and high performance a super capacitor electrode. Electrochim. Acta, 2012, 69, P. 112-119.
4. Li Wang, Yaolin Zheng, et al. Three-Dimensional Kenai Stem-Derived Porous Carbon/MnO2 for High-Performance Supercapacitors. Electrochim. Acta, 2014, 135, P. 380-387.
5. Wei W., Cui X., Chen W., Ivey D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev., 2011, 40 (3), P. 1697-1721.
6. Bordjiba T., Belanger D. Development of new nanocomposite based on nanosized-manganese oxide and carbon nanotubes for high performance electrochemical capacitors. Electrochim. Acta, 2010, 55 (9), P. 3428-3433.
7. Wang H., Gao Q., Hu J. Asymmetric capacitor based on superior porous Ni-Zn-Co oxide/hydroxide and carbon electrodes. J. Power Sources, 2010, 195 (9), P. 2419-3046.
8. Snook A.G., Kao P., Best A.S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources, 2011, 196 (1), P. 1-12.
9. Farah Alvi, Manoj K. Ram, et al. Graphene-polyethylene dioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim. Acta, 2011, 56, P. 9406-9412.
10. Qian Yang, Qi Li, et al. High performance graphene/manganese oxide hybrid electrode with exible holey structure. Electrochim. Acta, 2014, 129, P. 237-244.
11. Wei W., Cui X., Chen W., Ivey D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chemical Society Reviews, 2011, 40, 1697.
12. Hu C.C., Wu Y.T., Chang K.H. Low-Temperature Hydrothermal Synthesis of Mn3O4 and MnOOH Single Crystals: Determinant In uence of Oxidants. Chemistry of Materials, 2008, 20, 2890.
13. Toupin M., Brousse T., Belanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials, 2004, 16, 3184.
14. Dubal D.P., Dhawale D.S., Salunkhe R.R., Pawar S.M., Lokhande C.D. A novel chemical synthesis and characterization of Mn3O4 thin lms for supercapacitor application. Applied Surface Science, 2010, 256, 4411.
15. Hu M., Yao Z., Wang X. Graphene-Based Nanomaterial for Catalysis. Ind. Eng. Chem. Res., 2017, 56, P. 3477-3502.
16. Julkapli N.M., Bagheri S. Graphene supported heterogeneous catalysts: An overview.Int. J. Hydrogen Energy, 2015, 40 (2), P. 948-979.
17. Machado B.F., Serp P. Graphene-based materials for catalysis. Catal. Sci. Technol., 2012, 2 (1), P. 54-75.
18. Nagi M. Graphene oxide-metal oxide nanocomposites: fabrication, characterization and removal of cationic rhodamine B dye. RSC Advances, 2018, 8 (24), P. 13323-13332.
19. Farahmandjou M. Simple synthesis of new nano-sized pore structure vanadium pantoxide (V2O5).Int. J. Bio-Inorg. Hybr. Nanomater., 2015, 4 (4), P. 243-247.
20. Yugambica S., Clara Dhanemozhi A., Iswariya S. Synthesis and characterization of MnO2/rGO nanocomposite for supercapacitors.Int. Research J. of Engineering and Technology (IRJET), 2017, 4 (2), P. 486-491.
21. Wyckoff R.W.G. The Crystal Structures of Some Carbonates of the Calcite Group. American J. of Science, 1920, P. 317-360.
22. Shihao Huang. Development of Graphene Based Nanocomposite for Supercapacitor Applications, Ph.D thesis. School of Materials Science and Engineering Faculty of Science, University of New South Wales, 2019.
23. Gadang Priyotomo, Siska Pri harni, et al. A Field Study Of Atmospheric Corrosion Of Carbon Steel After Short Exposure In Palauan Ratu, West Java Province, Indonesia. Walailak J. Sci. & Tech., 2021, 18 (17), 9667.
24. Sadiq M.J.M., Shenoy U.S., Bhat K.D. Synthesis of BaWO4/NRGO-g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach. Front. Mater. Sci., 2018, 12, P. 247-263.
25. Yadav A.A., Lokhande C.A., et al. The synthesis of multifunctional porous honey comb-like La2O3 thin lm for supercapacitor and gas sensor applications. J. Colloid Interface Sci., 2016, 484, P.51-59.
Review
For citations:
Kalaiarasi S., Shyamala S., Kavitha M., Vedhi C., Muthuchudarkodi R.R. Electrochemical performance of r-graphene oxide based MnO2 nanocomposite for supercapacitor. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(3):320-330. https://doi.org/10.17586/2220-8054-2022-13-3-320-330