Impact of sensitizer Yb and activator Tm on luminescence intensity of β -NaYF4:Yb/Tm nanoluminophores
https://doi.org/10.17586/2220-8054-2022-13-3-331-341
Abstract
In this study, the impact of sensitizer and activator ions concentration on the intensity of up-conversion luminescence of nanoluminophores β-NaYF4:Yb3+/Tm3+ in dimethyl sulfoxide (DMSO) was investigated. Analysis of all luminescence spectral bands allows one to establish that the ratio of concentrations of ytterbium and thulium ions strongly effects on the luminescent properties of nanoluminophores. Increase of sensitizer concentration at constant activator concentration leads to an increase of the luminescence integral intensity. Optimal concentration of activators at fixed sensitizer concentration was determined: 2 mol.% for thulium and 18 mol.% for ytterbium. The sensitivity of each luminescence spectrum band to changes in the concentration of activators and sensitizers was explained by cross-relaxation processes in activator ions.
About the Authors
S. V. KuznetsovRussian Federation
S. A. Burikov
Russian Federation
A. A. Fedyanina
Russian Federation
E. A. Filippova
Russian Federation
V. Yu. Proydakova
Russian Federation
V. V. Voronov
Russian Federation
N. Yu. Tabachkova
Russian Federation
P. P. Fedorov
Russian Federation
T. A. Dolenko
Russian Federation
References
1. Auzel F. History of upconversion discovery and its evolution. J. Luminescence, 2020, 223, 1169005.
2. Bloembergen N. Solid State Infrared Quantum Counters. Phys. Rev. Lett., 1959, 2, P. 84-85.
3. Ovsyankin V.V., Feo lov P.P. Mechanism of Summation of Electronic Excitations in Activated Crystals. JETP Lett., 1966, 3, P. 322-323.
4. Escudero A., Becerro A.I., et al. Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications. Nanophotonics, 2017, 6, P. 881-921.
5. Pominova D.V., Proydakova V.Y., et al. Achieving high NIR-to-NIR conversion ef ciency by optimization of Tm3+ content in Na(Gd,Yb)F4: Tm upconversion luminophores. Laser Physics Letters, 2020, 17, 125701.
6. Burikov S.A., Kotova O.D., et al. Determining the Photophysical Parameters of NaGdF4:Eu Solid Solutions in Suspensions Using the Judd-Ofelt Theory. JETP Lett., 2020, 111, P. 525-531.
7. Liu Q. Studies of optical properties of lanthanide upconversion nanoparticles for emerging applications. Stockholm: KTH Royal Institute of Technology, 2020, 73 p.
8. Han S., Deng R., Xie X., Liu X. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem.Int. Ed., 2014, 53, P. 11702-11715.
9. Sarmanova O.E., Burikov S.A., et al. In Vitro Temperature Sensing with Up-Conversion NaYF4:Yb3+/Tm3+-Based Nanocomposites: Peculiarities and Pitfalls. Spectrochim. Acta A, 2020, 24, 118627.
10. Geitenbeek R.G., Prins P.T., et al. NaYF4:Er3+, Yb3+/SiO2 Core/Shell Upconverting Nanocrystals for Luminescence Thermometry up to 900 K. J. Phys. Chem. C, 2017, 121, P. 3503-3510.
11. Jaque D., Vetrone F. Luminescence nanothermometry. Nanoscale, 2012, 4, P. 4301-4326.
12. Pominova D., Proydakova V., et al. Temperature sensing in the short-wave infrared spectral region using core-shell NaGdF4:Yb3+, Ho3+, Er3+@NaYF4 nanothermometers. Nanomaterials, 2020, 10 (10), 1992.
13. Shalav A., Richards B.S., Green M.A. Luminescent Layers for Enhanced Silicon Solar Cell Performance: Up-Conversion. Sol. Energy Mater. Sol. Cells, 2007, 91, P. 829-842.
14. Trupke T., Green M.A., Wu¨rfel P. Improving Solar Cell Ef ciencies by Up-Conversion of Sub-Band-Gap Light. J. Appl. Phys., 2002, 92, P. 4117-4122.
15. Richards B.S. Enhancing the Performance of Silicon Solar Cells via the Application of Passive Luminescence Conversion Layers. Sol. Energy Mater. Sol. Cells, 2006, 90, P. 2329-2337.
16. Hu Y., Sun Y., et al. A facile synthesis of NaYF4:Yb3+/Er3+ nanoparticles with tunable multicolor upconversion luminescence properties for cell imaging. RSC Adv., 2014, 4, P. 43653-43660.
17. Pilch A., Wawrzyn´czyk D., et al. The concentration dependent up-conversion luminescence of Ho3+ and Yb3+ co-doped β-NaYF4. J. Lumin., 2017, 182, P. 114-122.
18. Kormshikov I.D., Voronov V.V., et al. Study of stability of luminescence intensity of β-NaGdF4: Yb: Er nanoparticle colloids in water solution. Nanosystems: Phys. Chem. Math.,, 2021, 12, P. 218-223.
19. Liu H.C., Xu C.T., et al. Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities. Nanoscale, 2013, 5, P. 4770-4775.
20. Saleta Reig D., Grauel B., et al. Upconversion properties of SrF2:Yb3+, Er3+ single crystals. J. Mater. Chem. C, 2020, 8, P. 4093-4101.
21. Zhao J., Jin D., et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nature Nanotechnology, 2013, 8, P. 729-734.
22. Chen G., Ohulchanskyy T.Y., et al. ACS Nano, 2010, 4, P. 3163-3168.
23. Ma C.S., Xu X.X., et al. Optimal Sensitizer Concentration in Single Upconversion Nanocrystals. Nano Lett., 2017, 17, P. 2858-2864.
24. Wei W., Zhang Y., et al. Cross relaxation induced pure red upconversion in activator- and sensitizer-rich lanthanide nanoparticles. Chem. Mater., 2014, 26, P. 5183-5186.
25. Pisarenko V.F. Rare-earth scandoborates as new laser materials. Soros. Obrazovat. Zh., 1996, 11, P. 111-116.
26. Li X., Shen D., et al. Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties. Chem. Mater., 2013, 25, P. 106-112.
27. Liu M., Gu M., et al. Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nano bers: electrospinning synthesis and concentration-modulated upconversion luminescent properties. J. Mater. Chem. C., 2017, 5, P. 4025-4033.
28. Bai X., Song H., et al. Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects. J. Phys. Chem. C, 2007, 111, P. 13611-13617.
29. Liu F., Ma E., et al. Tunable red-green upconversion luminescence in novel transparent glass ceramics containing Er:NaYF4 nanocrystals. The Journal of Physical Chemistry B, 2006, 110, P. 20843-20846.
30. Vetrone F., Boyer J.-C., Capobianco J.A. Signi cance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals. J. of Applied Physics, 2004, 96, P. 661-667.
31. Misiak M., Prorok K., et al. Thulium concentration quenching in the up-converting α-Tm3+/Yb3+ NaYF4 colloidal nanocrystals. Optical Materials, 2013, 35, P. 1124-1128.
32. Xu D., Liu C., et al. Understanding energy transfer mechanisms for tunable emission of Yb3+-Er3+ codoped GdF3 nanoparticles: concentration-dependent luminescence by near-infrared and violet excitation. J. Phys. Chem. C, 2015, 119, P. 6852-6860.
33. Tie Cong, Yadan Ding, et al. Solvent-Induced Luminescence Variation of Upconversion Nanoparticles. Langmuir, 2016, 32 (49), P. 13200-13206.
34. Brites C.D.S., Kuznetsov S.V., et al. Simultaneous measurement of the emission quantum yield and local temperature: The illustrative example of SrF2:Yb3+/Er3+ single crystals. European J. of Inorganic Chemistry, 2020, 2020 (17), P. 1555-1561.
35. Madirov E.I., Konyushkin V.A., et al. Effect of Yb3+ and Er3+ concentration on upconversion luminescence of co-doped BaF2 single crystals. J. Mater. Chem. C, 2021, 9, P. 3493-3503.
36. Fedorov P.P., Kuznetsov S.V., Osiko V.V. Elaboration of nano uorides and ceramics for optical and laser applications. In Photonic & Electronic Properties of Fluoride Materials, Ed. A. Tressaud, K. Poeppelmeier, 2016, P. 7-31.
37. Valenta J., Repko A., Greben M., Nizˇnˇansky´ D. Absolute up- and down-conversion luminescence ef ciency in hexagonal Na(Lu/Y/Gd)F4: Yb, Er/Tm/Ho with optimized chemical composition. AIP Advances, 2018, 8, 075226.
38. Wang F., Liu X. Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles. J. of the American Chemical Society, 2008, 30, P. 5642-5643.
39. Liu J., Chen G., Hao S., Yang C. Sub-6 nm monodisperse hexagonal core/shell NaGdF4 nanocrystals with enhanced upconversion photoluminescence. Nanoscale, 2017, 9.
40. Clegg R.M. Chapter 1 Fo¨rster resonance energy transfer - FRET what is it, why do it, and how it’s done. Laboratory Techniques in Biochemistry and Molecular Biology, 2009, 33, P. 1-57.
41. Dexter D.L. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys., 1953, 21, P. 836-850.
42. Bergstrand J., Liu Q.Y., et al. On the decay time of upconversion luminescence. Nanoscale, 2019, 11, P. 4959-4969.
43. Wen S., Zhou J., et al. Advances in highly doped upconversion nanoparticles. Nat.Commun., 2018, 9, 2415.
Review
For citations:
Kuznetsov S.V., Burikov S.A., Fedyanina A.A., Filippova E.A., Proydakova V.Yu., Voronov V.V., Tabachkova N.Yu., Fedorov P.P., Dolenko T.A. Impact of sensitizer Yb and activator Tm on luminescence intensity of β -NaYF4:Yb/Tm nanoluminophores. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(3):331-341. https://doi.org/10.17586/2220-8054-2022-13-3-331-341