On Keller-Rubinow model for Liesegang structure formation
https://doi.org/10.17586/2220-8054-2022-13-4-365-371
Abstract
We consider a chemical process, the precipitate of which will be represented by a structure in the form of rings. The study and modeling of this process is relevant, since it becomes possible to form micro- and nanostructures based on this approach. We consider the version of the one-dimensional model of Keller and Rubinow which describes the formation of Liesegang rings due to the Ostwald supersaturation. The dependencies of the results obtained on the initial conditions and the model parameters were studied numerically.
About the Authors
T. N. TopaevRussian Federation
A. I. Popov
Russian Federation
I. Y. Popov
Russian Federation
References
1. Liesegang R.E. U¨ ber einige Eigenschaften von Gallerten. Naturwiss. Wochenschr., 1896, 11, P. 353-362.
2. Young Shin Cho, Miyoung Moon, Gabor Hollo, Istvan Lagzi, Sung Ho Yang. Bioinspired Control of Calcium Phosphate Liesegang Patterns Using Anionic Polyelectrolytes. Langmuir, 2022, 38(8), P. 2515-2524.
3. Eltantawy M.M., Belokon M.A., Belogub E.V., Ledovich O.I., Skorb E.V., Ulasevich S.A. Self-Assembled Liesegang Rings of Hydroxyapatite for Cell Culturing. Adv. NanoBiomed Res., 2021, 1, P. 200048 10.1002/anbr.202000048.
4. Morsali M., Khan M.T.A., Ashirov R., Hollo G., Baytekin H.T., Lagzi I., Baytekin B. Mechanical Control of Periodic Precipitation in Stretchable Gels to Retrieve Information on Elastic Deformation and for the Complex Patterning of Matter. Adv. Mater., 2020, 32, P. 1905779.
5. Walliser R.M., Boudoire F., Orosz E., Toth R., Braun A., Constable E.C., Racz Z., Lagzi I. Growth of Nanoparticles and Microparticles by Controlled Reaction-Diffusion Processes. Langmuir, 2015, 31, P. 1828-1834.
6. Lagzi I., Kowalczyk B., Grzybowski B.A. Liesegang Rings Engineered from Charged Nanoparticles. J. Am. Chem. Soc., 2009, 132, P. 58-60.
7. Jo M., Cho Y.S., Hollo G., Choi J., Lagzi I., Yang S.H. Spatiotemporal and Microscopic Analysis of Asymmetric Liesegang Bands: Diffusion-Limited Crystallization of Calcium Phosphate in a Hydrogel. Cryst. Growth Des., 2021, 21, P. 6119-6128.
8. Whitesides G.M., Grzybowski B. Self-Assembly at All Scales. Science, 2002, 295(5564), P. 2418-2421.
9. Jablczynski K. Zur Theorie der Liesegangschen Ringe. Bull. Soc. Chim. Princeton University Press, 1923, 1592 p.
10. Hilhorst D., van der Hout R., Peletier L.A. The fast reaction limit for a reaction-diffusion system. J. Math. Analysis and Appl., 1996, 199, P. 349- 373.
11. Hilhorst D., van der Hout R., Mimura M., Ohnishi I. A Mathematical study of the one-dimensional Keller and Rubinow model for Liesegang bands. Journal of Statistical Physics, 2009, 135, P. 107-132.
12. Keller J.B., Rubinow S.I. Recurrent precipitation and Liesegang rings. J. Chem. Phys, 1981, 74, P. 5000-5007.
13. Duley J.M., Fowler A.C., Moyles I.R., O’Brien S.B.G. On the Keller-Rubinow model for Liesegang ring formation. Proc. R. Soc. A., 2017, 473, P. 20170128.
14. Ohnishi I. and Mimura M. A mathematical aspect for Liesegang phenomena. Proceeding of Equadiff.Comenius University, Bratislava, Slovakia, July 25-29, 2005. P. 343-352.
15. Ostwald W. Zur Theorie der Liesegangschen Ringe. Princeton University Press, Princeton, NJ, 1925, P. 380-390.
16. Kai S., Muller. Spatial and temporal macroscopic structures in chemical reaction system: precipitation patterns and interfacial motion. Sci. Form., 1985, 1, P. 8-38.
17. Doerr B. and Doerr C. Armadillo library for linear algebra scientific computing [Electronic resource], 2016. URL: http://arma.sourceforge.net/docs.html
18. Doerr B. and Doerr C. Pandas documentation [Electronic resource]. 2020. URL: https://pandas.pydata.org/
19. Doerr B. and Doerr C. C++ reference [Electronic resource]. 2019. URL: https://en.cppreference.com/w/
20. Doerr B. and Doerr C. Python Doc [Electronic resource]. 2019. URL: https://docs.python.org/3/
21. Doerr B. and Doerr C. Jupyter notebook [Electronic resource]. 2019. URL: https://jupyter.org/documentation
Review
For citations:
Topaev T.N., Popov A.I., Popov I.Y. On Keller-Rubinow model for Liesegang structure formation. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(4):365-371. https://doi.org/10.17586/2220-8054-2022-13-4-365-371