Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Comparison of Gaussian and vortex beams in free-space QKD with phase encoding in turbulent atmosphere

https://doi.org/10.17586/2220-8054-2022-13-4-392-403

Abstract

At present, free-space QKD systems are being actively researched and developed. The main limitation of these systems remains the strong influence of atmospheric turbulence and weather conditions on the propagating Gaussian beam. In turn, a number of works have shown that vortex beams are more stable in a turbulent atmosphere. Thus, in this work, the use of vortex beams in the free-space QKD system with phase encoding under the condition of a turbulent atmosphere and their comparison with Gaussian beams are studied. The possibility of phase modulation preservation with additional modulation and demodulation of the vortex beam is also investigated.

About the Authors

I. A. Adam
ITMO University
Russian Federation


D. A. Yashin
ITMO University
Russian Federation


D. A. Kargina
ITMO University
Russian Federation


B. A. Nasedkin
ITMO University
Russian Federation


References

1. Wootters W.K., Zurek W.H., The no-cloning theorem, Physics Today, 2009, 62(2), P. 76-77.

2. Bennett C.H., Brassard G., Quantum cryptography: public key distribution and coin tossing. Proceedings of the International Conference on Computers, Systems and Signal Processing, 1984, 1, P. 175-179.

3. Pirandola S., Andersen U.L., Banchi L., Berta M., Bunandar D., Colbeck R., Englund D., Gehring T., Lupo C., Ottaviani C., Pereira J.L., Razavi M., Shamsul Shaari J., Tomamichel M., Usenko V.C., Vallone G., Villoresi P., and Wallden P., Advances in quantum cryptography. Advances in Optics and Photonics, 2020, 12(4), P. 1012.

4. Bourgoin J.-P.,. Higgins B.L, Gigov N., Holloway C., Pugh C.J., Kaiser S., Cranmer M., and Jennewein T., Free-space quantum key distribution to a moving receiver. Optics Express, 2015, 23(26), P. 33437.

5. Liao S.K., Cai W.Q., Liu W.Y., Zhang L., Li Y., Ren J.G., Yin J., Shen Q., Cao Y., Li Z.P., Li F.Z., Chen X.W., Sun L.H., Jia J.J., Wu J.C., Jiang X.J., Wang J.F., Huang Y.M., Wang Q., Zhou Y.L., Deng L., Xi T., Ma L., Hu T., Zhang Q., Chen Y.A., Liu N.L., Wang X.B., Zhu Z.C., Lu C.Y., Shu R., Peng C.Z., Wang J.Y., and Pan J.W., Satellite-to-ground quantum key distribution. Nature, 2017, 549(7670), P. 43-47.

6. Al-Mohammed H.A. and Yaacoub E., On the Use of Quantum Communications for Securing IoT Devices in the 6G Era. 2021 IEEE International Conference on Communications Workshops, ICC Workshops 2021 - Proceedings, 2021.

7. Zhou Y., Zhao J., Braverman B., Pang K., Zhang R., Willner A.E., Shi Z., and Boyd R.W., Multiprobe Time Reversal for High-Fidelity Vortex- Mode-Division Multiplexing over a Turbulent Free-Space Link. Physical Review Applied, 2021, 15(3), P. 1.

8. Aksenov V.P. and Pogutsa C.E., Fluctuations of the orbital angular momentum of a laser beam, carrying an optical vortex, in the turbulent atmosphere. Quantum Electronics, 2008, 38(4), P. 343.

9. Shen Y., Wang X., Xie Z., Min C., Fu X., Liu Q., Gong M., and Yuan X., Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Science and Applications, 2019, 8(1).

10. Sit A., Fickler R., Alsaiari F., Bouchard F., Larocque H., Gregg P., Yan L., Boyd R.W., Ramachandran S., and Karimi E., Quantum cryptography with structured photons through a vortex fiber. Optics Letters, 2018, 43(17), P. 4108.

11. Qu Z. and Djordjevic I.B., High-speed free-space optical continuous-variable quantum key distribution enabled by three-dimensional multiplexing. Optics Express, 2017, 25(7), P. 7919.

12. Soskin M. and Vasnetsov M., Singular optics. Progress in optics, 2001, 42(4), P. 219-276.

13. Liu Y., Zhang K., Chen Z., and Pu J., Scintillation index of double vortex beams in turbulent atmosphere. Optik, 2019, 181(November), P. 571-574.

14. Charnotskii M., Four methods for generation of turbulent phase screens: comparison, 2019, no. November.

15. Kynev S.M., Chistyakov V.V., Smirnov S.V., Volkova K.P., Egorov V.I., and Gleim A.V., Free-space subcarrier wave quantum communication. Journal of Physics: Conference Series, 2017, 917(5).

16. Kim I.I., McArthur B., and Korevaar E.J., Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. Optical Wireless Communications III, P. 26-37.

17. Gleim A., Egorov V., Nazarov Y.V., Smirnov S., Chistyakov V., Banni O.k, Anisimov A., Kynev S., Ivanova A., Collins R., et al., Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using bb84 protocol with a strong reference. Optics express, 2016, 24(3), P. 2619-2633.

18. Miroshnichenko G.P., Kozubov A.V., Gaidash A.A., Gleim A.V., and Horoshko D.B., Security of subcarrier wave quantum key distribution against the collective beam-splitting attack. Optics Express, 2018, 26, P. 11292.

19. Vasylyev D.Y., Semenov A., and Vogel W., Toward global quantum communication: beam wandering preserves nonclassicality. Physical review letters, 2012, 108(22), P. 220501.

20. Faleeva M. and Popov I., Entanglement transmission through turbulent atmosphere for modes of gaussian beam. Quantum Information Processing, 2020, 19(2), P. 1-9.

21. Cheng W., Haus J.W., and Zhan Q., Propagation of vector vortex beams through a turbulent atmosphere. Optics express, 2009, 17(20), P. 17829-17836.

22. Hui X., Zheng S., Hu Y., Xu C., Jin X., Chi H., and Zhang X., Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam. IEEE Antennas and Wireless Propagation Letters, 2015, 14, P. 966-969.

23. Karahroudi M.K., Parmoon B., Qasemi M., Mobashery A., and Saghafifar H., Generation of perfect optical vortices using a Bessel-Gaussian beam diffracted by curved fork grating. Applied Optics, 2017, 56(21), P. 5817.

24. Pradhan P., Sharma M., and Ung B., Generation of perfect cylindrical vector beams with complete control over the ring width and ring diameter. IEEE Photonics Journal, 2018, 10(1), P. 1-10.

25. Conrad A., Isaac S., Cochran R., Sanchez D., Wilens B., Gutha A., Rezaei T. , Gauthier D.J. and Kwiat P., Drone-based quantum key distribution: QKD. Proc. SPIE, Free-Space Laser Communications XXXIII, 2021, 11678, 116780X.

26. Hill A.D., Chapman J., Herndon K., Chopp C., Gauthier D.J., and Kwiat P., Drone-based quantum key distribution. Urbana, 2017, 51, P 61801-63003.

27. Bekshaev A.Y., Karamoch A., Vasnetsov M., Pas’ ko V., and Soskin M., Structure of optical vortices produced by holographic gratings with “fork” geometry: Kummer beams. arXiv preprint arXiv:0906.2619, 2009.


Review

For citations:


Adam I.A., Yashin D.A., Kargina D.A., Nasedkin B.A. Comparison of Gaussian and vortex beams in free-space QKD with phase encoding in turbulent atmosphere. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(4):392-403. https://doi.org/10.17586/2220-8054-2022-13-4-392-403

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)