Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Photochromic aerogels based on cellulose and chitosan modified with WO3 nanoparticles

https://doi.org/10.17586/2220-8054-2022-13-4-404-413

Аннотация

In this work, we report the first synthesis of photochromic aerogels and films based on TEMPO-oxidized cellulose and chitosan modified with tungsten trioxide nanoparticles. The blue coloring of aerogels based on WO3-modified biopolymers under UV light occurs due to the reduction of W+6 to W+5. The coloration of films of the same composition occurs due to the reduction of W+6 to W+5 and W+4. The photochromic properties of aerogels and films are reversible; oxidation by atmospheric oxygen leads to bleaching of materials. At that, films become colorless within a few days while aerogels with a high specific surface area (200 m2/g) become colorless within several minutes. The antioxidant properties of the WO3 sol and the WO3/TEMPO-oxidized cellulose/chitosan composite were studied by luminol-activated chemiluminescence method. The antioxidant capacity of WO3/TEMPO-oxidized cellulose/chitosan gel is 1.5 times higher than that of the commercially available antioxidant mexidol.

Об авторах

S. Kameneva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


M. Popkov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Lomonosov Moscow State University
Россия


I. Tronev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; HSE University
Россия


S. Kottsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Lomonosov Moscow State University
Россия


M. Sozarukova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


V. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Россия


Список литературы

1. Budtova T. Cellulose II aerogels: a review. Cellulose, 2019, 26(1), P. 81-121.

2. Habibi Y., Lucia L.A., and Rojas O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev., 2010, 110, P. 3479-3500.

3. Ganesan K. et al. Review on the production of polysaccharide aerogel particles. Materials (Basel)., 2018, 11(11), P. 1-37.

4. Abdul Khalil H.P., et al. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr. Polym., 2016, 150, P. 216-226.

5. William D., Connell O., Birkinshaw C., Francis T., and Dwyer O. Heavy metal adsorbents prepared from the modification of cellulose: A review. 2008, 99, P. 6709-6724.

6. Kaushik M. and Moores A. Review: Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem., 2016, 18(3), P. 622-637.

7. Garc´ıa-Gonza´lez C.A., Alnaief M., and Smirnova I. Polysaccharide-based aerogels-Promising biodegradable carriers for drug delivery systems. Carbohydr. Polym., 2011, 86(4), P. 1425-1438.

8. Pircher N., et al. Preparation and Reinforcement of Dual-Porous Biocompatible Cellulose Scaffolds for Tissue Engineering. Macromol. Mater. Eng., 2015, 300(9), P. 911-924.

9. Franc¸on H., et al. Ambient-Dried, 3D-Printable and Electrically Conducting Cellulose Nanofiber Aerogels by Inclusion of Functional Polymers. Adv. Funct. Mater., 2020, 30(12), P. 1909383.

10. Li Z., et al. Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydr. Polym., 2018, 191, P. 183-190.

11. Li V.C.F., Mulyadi A., Dunn C.K., Deng Y., and Qi H.J. Direct Ink Write 3D Printed Cellulose Nanofiber Aerogel Structures with Highly Deformable, Shape Recoverable, and Functionalizable Properties. ACS Sustain. Chem. Eng., 2018, 6(2), P. 2011-2022.

12. Schestakow M., Muench F., Reimuth C., Ratke L., and Ensinger W. Electroless synthesis of cellulose-metal aerogel composites. Appl. Phys. Lett., 2016, 108(21), P. 213108, May.

13. Li M. and Fu S. Photochromic holo-cellulose wood-based aerogel grafted azobenzene derivative by SI-ATRP. Carbohydr. Polym., 2021, 259, P. 117736.

14. Yamazaki S., Ishida H., Shimizu D., and Adachi K. Photochromic Properties of Tungsten Oxide/Methylcellulose Composite Film Containing Dispersing Agents. ACS Appl. Mater.Interfaces, 2015, 7(47), P. 26326-26332.

15. Adachi K., et al. Kinetic characteristics of enhanced photochromism in tungsten oxide nanocolloid adsorbed on cellulose substrates, studied by total internal reflection Raman spectroscopy. RSC Adv., 2012, 2(5), P. 2128-2136.

16. Zhang Q., Wang R., Lu Y., Wu Y., Yuan J., and Liu J. Highly Efficient Photochromic Tungsten Oxide@PNIPAM Composite Spheres with a Fast Response. ACS Appl. Mater.Interfaces, 2021, 13(3), P. 4220-4229.

17. Dong C., Zhao R., Yao L., Ran Y., Zhang X., and Wang Y. A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. J. Alloys Compd., 2020, 820, P. 153194.

18. Guo X.Z., Kang Y.F., Yang T.L., and Wang S.R. Low-temperature NO2 sensors based on polythiophene/WO3 organic-inorganic hybrids. Trans. Nonferrous Met. Soc. China (English Ed.), 2012, 22(2) P. 380-385.

19. Yu H., et al. Colloidal synthesis of tungsten oxide quantum dots for sensitive and selective H2S gas detection. Sensors Actuators, B Chem., 2017, 248, P. 1029-1036.

20. El Fawal G.F., Abu-Serie M.M., Hassan M.A., and Elnouby M.S. Hydroxyethyl cellulose hydrogel for wound dressing: Fabrication, characterization and in vitro evaluation.Int. J. Biol. Macromol., 2018, 111, P. 649-659.

21. Popov A.L., et al. Photo-induced toxicity of tungsten oxide photochromic nanoparticles. J. Photochem. Photobiol. B Biol., 2018, 178, P. 395-403.

22. D’Autre´aux B. and Toledano M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol., 2007, 8(10), P. 813-824.

23. Ciccarese F., Raimondi V., Sharova E., Silic-Benussi M., and Ciminale V. Nanoparticles as Tools to Target Redox Homeostasis in Cancer Cells. Antioxidants, 2020, 9(3), P. 211.

24. Kwon S., Ko H., You D.G., Kataoka K., and Park J.H. Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment. Acc. Chem. Res., 2019, 52(7), P. 1771-1782.

25. Di Marzo N., Chisci E., and Giovannoni R. The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells, 2018, 7(10), P. 156.

26. Costa T.J., et al. The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic. Biol. Med., 2021, 162, P. 615-635.

27. Evdokimova O.L., et al. Highly reversible photochromism in composite WO3/nanocellulose films. Cellulose, 2019, 26, P. 9095-9105.

28. Sozarukova M.M., Proskurnina E.V., and Ivanov V.K. Prooxidant potential of ceo2 nanoparticles towards hydrogen peroxide. Nanosyst. Physics, Chem. Math., 2021, 12(3), P. 283-290.

29. Fayad A.M., Ouis M.A., El Batal F.H., and El Batal H.A. Shielding Behavior of Gamma-Irradiated MoO3 or WO3-Doped Lead Phosphate Glasses Assessed by Optical and FT Infrared Absorption Spectral Measurements. Silicon, 2018, 10, P. 1873-1879.

30. Loo A.E.K., et al. Effects of Hydrogen Peroxide on Wound Healing in Mice in Relation to Oxidative Damage. PLoS One, 2012, 7(11), P. e49215.

31. Stone J.R. and Yang S. Hydrogen Peroxide: A Signaling Messenger. Antioxid. Redox Signal., 2006, 8(3-4), 243-270.

32. Di Marzo N., Chisci E., and Giovannoni R. The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells, 2018, 7(10), P. 156.

33. Lismont C., Revenco I., and Fransen M. Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease.International Journal of Molecular Sciences, 2019, 20(15), P. 3673.

34. Pirmohamed T., et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem.Commun., 2010, 46(16), P. 2736-2738.

35. Hu M., Korschelt K., Daniel P., Landfester K., Tremel W., and Bannwarth M.B. Fibrous Nanozyme Dressings with Catalase-Like Activity for H2O2 Reduction To Promote Wound Healing. ACS Appl. Mater.Interfaces, 2017, 9(43), P. 38024-38031.

36. Wei H. and Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev., 2013, 42(14), P. 6060-6093.

37. Sozarukova M.M., Shestakova M.A., Teplonogova M.A., Izmailov D.Y., Proskurnina E.V., and Ivanov V.K. Quantification of Free Radical Scavenging Properties and SOD-Like Activity of Cerium Dioxide Nanoparticles in Biochemical Models.Russ. J. Inorg. Chem., 2020, 65(4), P. 597-605.


Рецензия

Для цитирования:


 ,  ,  ,  ,  ,   . Наносистемы: физика, химия, математика. 2022;13(4):404-413. https://doi.org/10.17586/2220-8054-2022-13-4-404-413

For citation:


Kameneva S.V., Popkov M.A., Tronev I.V., Kottsov S.Yu., Sozarukova M.M., Ivanov V.K. Photochromic aerogels based on cellulose and chitosan modified with WO3 nanoparticles. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(4):404-413. https://doi.org/10.17586/2220-8054-2022-13-4-404-413

Просмотров: 1


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)