Study of the structure and bioactivity of powdered iron oxides synthesized by sol-gel method
https://doi.org/10.17586/2220-8054-2022-13-4-414-429
Abstract
Magnetite (Fe3O4) and maghemite with an admixture of hematite (γ-Fe2O3/ α-Fe2O3) powders are synthesized via sol-gel process and characterized using XRD, SEM, low temperature nitrogen adsorption, small-angle X-ray scattering (SAXS) and small-angle polarized neutron scattering (SAPNS). The synthesized γ-Fe2O3/ α-Fe2O3 and Fe3O4 samples are found to be porous systems featuring with a three-level hierarchically organized structure with different intrinsic scales and aggregation types for each of the structural levels. For both materials, the intrinsic size of the highest level exceeds 70 nm, and magnetic structure involves super-paramagnetic particles with a characteristic radius of magnetic-nuclear cross-correlations R_MN ≈ 3 nm. The biological activity of γ-Fe2O3/ α-Fe2O3 and Fe3O4 aqueous suspensions in certain concentrations in respect to seed treatment, growth and productivity of plants was studied using the example of spring barley variety Leningradsky under adjustable favorable conditions and physical modeling of stress effects (irradiation with high-intensity UV-B radiation, soil moisture deficiency).
About the Authors
T. V. KhamovaRussian Federation
O. A. Shilova
Russian Federation
Yu. E. Gorshkova
Russian Federation
N. V. Tsvigun
Russian Federation
O. V. Gerashchenko
Russian Federation
A. E. Baranchikov
Russian Federation
O. R. Udalova
Russian Federation
A. S. Zhuravleva
Russian Federation
G. G. Panova
Russian Federation
G. P. Kopitsa
Russian Federation
References
1. Samrot A.V., Sahithya C. Sai, et al. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Current Research in Green and Sustainable Chemistry, 2021, 4, 100042.
2. Song C., Sun W., Xiao Yu., Shi X. Ultrasmall iron oxide nanoparticles: synthesis, surface modification, assembly, and biomedical applications. Drug Discovery Today, 2019, 24 (3), P. 835-844.
3. Bhateria R., Singh R. A review on nanotechnological application of magnetic iron oxides for heavy metal removal. J. of Water Process Engineering, 2019, 31, 100845.
4. Sheikholeslami Z., Yousefi Kebria D., Qaderi F. Application of γ-Fe2O3 nanoparticles for pollution removal from water with visible light. J. of Molecular Liquids, 2020, 299, 112118.
5. Wang W., Li F., et al. M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy. J. of Materials Science & Technology, 2021, 81, P. 77-87.
6. Li M., Zhang P., et al. Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environmental Pollution, 2021, 269, 116134.
7. Pariona N., Mart´ınez A.I., Hernandez-Flores H., Clark-Tapia R. Effect of magnetite nanoparticles on the germination and early growth of Quercus macdougallii. Science of The Total Environment, 2017, 575, P. 869-875.
8. Li J., Hu J., et al. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemo-sphere, 2016, 159, P. 326-334.
9. Iannone M.F., Groppa M.D., et al. Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: Evaluation of oxidative damage. Environmental and Experimental Botany, 2016, 131, P. 77-88.
10. Tombuloglu H., Slimani Y., et al. Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere, 2019, 226, P. 110-122.
11. Yan L., Li P., et al. Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles. Science of the Total Environment, 2020, 718, 137400.
12. Ding Y., Bai X., et al. Toxicological responses of Fe3O4 nanoparticles on Eichhornia crassipes and associated plant transportation. Science of the Total Environment, 2019, 671, P. 558-567.
13. Wang Y., Wang S., et al. The impacts of γ-Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. Environmental Pollution, 2019, 249, P. 1011-1018.
14. Cai L., Jia H., et al. Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: Evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J. of Hazardous Materials, 2020, 393, 122415.
15. Konate A., Wang Y., et al.Comparative effects of nano and bulk-Fe3O4 on the growth of cucumber (Cucumis sativus). Ecotoxicology and Environmental Safety, 2018, 165, P. 547-554.
16. Nistico` R. A synthetic guide toward the tailored production of magnetic iron oxide nanoparticles. Bolet´ın de la Sociedad Espan˜ola de Cera´mica y Vidrio, 2021, 60 (1), P. 29-40.
17. Lastovina T.A., Budnyk A.P., Kubrin S.P., Soldatov A.V. Microwave-assisted synthesis of ultra-small iron oxide nanoparticles for biomedicine. Mendeleev Communications, 2018, 28 (2), P. 167-169.
18. Caldero´n P.A., Pablo B., et al. Magnetic iron oxides nanoparticles obtained by mechanochemical reactions from different solid precursors. J. of Alloys and Compounds, 2021, 860, 157892.
19. Bhavani P., Rajababu C.H., et al. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method. J. of Magnetism and Magnetic Materials, 2017, 426, P. 459-466.
20. Jafari Eskandari M., Hasanzadeh I. Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation. Materials Science and Engineering: B, 2021, 266, 115050.
21. Koizumi H., Azhar Uddin Md, Kato Y. Effect of ultrasonic irradiation on γ-Fe2O3 formation by co-precipitation method with Fe3+ salt and alkaline solution. Inorganic Chemistry Communications, 2021, 124, 108400.
22. Xu J., Yang H., et al. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J. of Magnetism and Magnetic Materials, 2007, 309 (2), P. 307-311.
23. Hasanpour A., Niyaifar M., Asan M., Amighian J. Synthesis and characterization of Fe3O4 and ZnO nanocomposites by the sol-gel method. J. of Magnetism and Magnetic Materials, 2013, 334, P. 41-44.
24. Okorokov A.I., Grigor’ev S.V., et al. New magnetic phenomena and polarized neutrons. Surf. Investigation. X-ray, Synchrotron Neutron Techniq, 2007, 1, P. 542-555.
25. Muhlbauer S., Honecker D., et al. Magnetic small-angle neutron scattering. Reviews of Modern Physics, 2019, 91, 015004.
26. Runov V., Glattli H., et al. Small-angle polarized neutron scattering in Sm1-xSrxMnO3 (x 0.5) perovskite. Physica B, 2000, 276-278, P. 795-796.
27. Bergenti I., Deriu A., et al. Small angle polarised neutron scattering investigation of magnetic nanoparticles. J. of Magnetism and Magnetic Materials, 2003, 262 (1), P. 60-63.
28. Runov V.V., Bugrov A.N., et al. Mesostructure of Composite Materials Based on Segmented Poly(Urethane Imide) Containing Ferrite Nanoparticles.Rus. J. of Inorganic Chemistry, 2021, 66, P. 225-236.
29. Runov V.V., Bugrov A.N., et al. Magnetic Neutron Scattering in Reduced Graphene Oxide. JETP Letters, 2021, 113, P. 384-388.
30. Shilova O., Panova G., et al. Aqueous Chemical Co-Precipitation of Iron Oxide Magnetic Nanoparticles for Use in Agricultural Technologies. Letters in Applied NanoBioScience, 2021, 10 (2), P. 2215-2239.
31. Wignall G.T., Bates F.S. Absolute calibration of small-angle neutron scattering data. J. Appl. Crystallogr., 1987, 20, P. 28-40.
32. Julich Centre for Neutron Science, QtiKWS 2019, URL: www.qtisas.com.
33. Panova G.G., Chernousov I.N., et al. Scientific basis for large year-round yields of high-quality crop products under artificial lighting.Russian Agricultural Sciences, 2015, 41, P. 335-339.
34. Beaucage G., Ulibarri T.A., Black E.P., Schaefer D.W. In Mark J., et al. (eds) Multiple Size Scale Structures in Silica-Siloxane Composites Studied by Small-Angle Scattering. American Chemical Society, Washington, 1995.
35. Sˇteˇpa´nek M., Mateˇj´ıcˇek P, et al. Polyelectrolyte-Surfactant Complexes Formed by Poly[3,5-bis(trimethylammoniummethyl)4-hydroxystyrene iodide]-block-poly(ethylene oxide) and Sodium Dodecyl Sulfate in Aqueous Solutions. Langmuir, 2011, 27 (9), P. 5275-5281.
36. Khamova T.V., Kopitsa G.P., et al. The Structure and Properties of TiO2 Nanopowders for Use in Agricultural Technologies. Biointerface Research in Applied Chemistry, 2021, 11 (4), P. 12285-12300.
37. Guinier A., Fournet G. Small-angle scattering of X-rays. John Wiley and Sons, Inc, New York, 1955.
38. Oh C., Sorensen C.M. The Effect of Overlap between Monomers on the Determination of Fractal Cluster Morphology. J. Colloid Interface Sci., 1997, 193 (1), P. 17-25.
39. Porod G. Die Ro¨ntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. Kolloid-Zeitschrift, 1952, 125, P. 51-57.
40. Bale H.D., Schmidt P.W. Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties. Phys. Rev. Lett., 1984, 53, 596.
41. Teixeira J. In: Stanley HE, Ostrowsky N. (eds) Experimental methods for studying fractal aggregates. Springer, Dordrecht, 1986.
42. Beaucage G. Approximations Leading to a Unified Exponential / Power-Law Approach to Small-Angle Scattering. J. Appl. Crystallogr., 1995, 28, P. 717-728.
Review
For citations:
Khamova T.V., Shilova O.A., Gorshkova Yu.E., Tsvigun N.V., Gerashchenko O.V., Baranchikov A.E., Udalova O.R., Zhuravleva A.S., Panova G.G., Kopitsa G.P. Study of the structure and bioactivity of powdered iron oxides synthesized by sol-gel method. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(4):414-429. https://doi.org/10.17586/2220-8054-2022-13-4-414-429