Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Near-IR photoluminescence and structural properties of TiO2 powders with nanocrystalline anatase/brookite matrix

https://doi.org/10.17586/2220-8054-2022-13-4-445-455

Abstract

The properties are studied for near-IR photoluminescence (PL) observed at 865 - 870 nm for precipitated TiO2 powders having nanocrystalline anatase/brookite structure: the dependence of NIR PL on annealing in oxygen, on content and crystallinity quality of brookite, and on excitation energy (Eex). NIR PL in bi-phase powders was found to demonstrate a behavior characteristic of NIR PL in brookite. NIR emission intensity grows with increasing brookite content and at annealing in oxygen, when oxygen vacancies content decreases and crystallinity quality of brookite improves. The results indicate that in the bi-phase powders, brookite contains deep-level defect traps which are regarded responsible for NIR-PL in brookite and are favorable for photocatalytic reactions. NIR emission is observed for the band (Eex ~ Eb) and below band-gap green (Eex < Eb) excitation. A mechanism underlying NIR-PL in brookite with green excitation is suggested to be similar to that for the red PL known for anatase at below band-gap excitation.

About the Authors

E. S. Ulyanova
Institute of Solid State Chemistry of Ural Branch of the Russian Academy of Sciences
Russian Federation


E. V. Shalaeva
Institute of Solid State Chemistry of Ural Branch of the Russian Academy of Sciences
Russian Federation


Yu. S. Ponosov
M. N. Mikheev Institute of Metal Physics of Ural Branch of the Russian Academy of Sciences
Russian Federation


O. A. Lipina
Institute of Solid State Chemistry of Ural Branch of the Russian Academy of Sciences
Russian Federation


A. A. Markov
Institute of Solid State Chemistry of Ural Branch of the Russian Academy of Sciences
Russian Federation


References

1. Katal R., Masudy-Panah S., et al. A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis. Chemical Engin. J., 2020, 384, 123384.

2. Verma R., Gangwar J., Srivastava A.K. Multiphase TiO2 nanostructures: a review of efficient synthesis, growth mechanism, probing capability, and applications in bio-safety and health. RSC Advances, 2017, 7, P. 44199-44224.

3. Miyoshi A., Nishioka S., Maeda K. Water splitting on rutile TiO2-based photocatalysts. Chemistry: A European J., 2018, 24, P. 1-17.

4. Paolo A. Di, Bellardita M., Palmisano L. Brookite, the least known TiO2 photocatalyst. Catalysts, 2013, 3, P. 36-73.

5. Monai M., Montini T., Fornasiero P. Brookite: nothing new under the sun. Catalysts, 2017, 7, P. 304-323.

6. Choi M., Yong K. A facile strategy to fabricate high-quality single crystalline brookite TiO2 nanoarrays and their photoelectrochemical properties. Nanoscale, 2014, 6, P. 3900-13909.

7. Li Z., Cong S., Xu Y. Brookite vs anatase TiO2 in the photocatalytic activity for organic degradation in water. ACS Catalysis, 2014, 4, P. 3273-3280.

8. Ohno T., Higo T., et al. Dependence of photocatalytic activity on aspect ratio of brookite TiO2 nanorod and drastic improvement in visible light responsibility of a brookite TiO2 nanorod by site-selective modification of Fe3+ on exposed faces. J. of Molecular Catalysis A: Chemical, 2015, 396, P. 261-267.

9. Mamakhel A., Yu J., et al. Facil synthesis of brookite TiO2 nanoparticles. Chem.Commun., 2020, 56, P. 15084-15087.

10. Vequizo J.M., Matsunaga H., et al. Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders. ACS Catalysis, 2017, 7, P. 2644-2651.

11. Vequizo J.M., Kamimura S., Ohno T., Yamakata A. Oxygen induced enhancement of NIR emission in brookite TiO2 powders: comparison with rutile and anatase powders. Phys. Chem. Chem. Phys., 2018, 20, P. 3241-3248.

12. Zhao H., Liu L., Andino J.M., Li Y. Bicrystalline TiO2 with controllable anatase-brookite phase content for enhanced CO2 photoreduction to fuels. J. of Materials Chemistry A, 2013, 1, P. 8209-8216.

13. Fischer K., Gawel A., et al. Low-temperature synthesis of anatase/rutile/brookite TiO2 nanoparticles on a polymer membrane for photocatalysis. Catalysts, 2017, 7, P. 209-223.

14. Kozhevnikova N.S., Ulyanova E.S., et al. Low-temperature sol-gel synthesis and photoactivity of nanocrystalline TiO2 with the anatase/brookite structure and an amorphous component. Kinetics and Catalysis, 2019, 60, P. 325-336.

15. Vorokh A.S., Kozhevnikova N.S., et al. Facile, rapid and efficient doping of amorphous TiO2 by pre-synthesized colloidal CdS quantum dots. J. Alloys and Comp., 2017, 706, P. 205-214.

16. Ulyanova E.S., Zamyatin D.A., et al. Local environment of CdS nanoparticles incorporated into anatase/brookite matrix via sol-gel route: HRTEM, Raman spectroscopy and MD simulation. Materials Today Communications, 2020, 25, 101465.

17. Cong Y., Zhang J., Chen F., Anpo M. Synthesis and Characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys.Chem., 2007, 111, P. 6976-6982.

18. Yan J., Wu G., et al. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus ritule. PCCP, 2013, 15, P. 10978-10988.

19. Abazovic N.D., Comor M.I., et al. Photoluminescence of anatase and rutile TiO2 particles. J. Phys. Chem. B, 2006, 110, P. 25366-25370.

20. Mathew S., Prasad A.K., et al. UV-Visible photoluminescence of TiO2 nanoparticles prepared by hydrothermal method. J. Pluoresc., 2012, 22, P. 1593-1599.

21. Chetibi L., Busko T., et al. Photoluminescence properties of TiO2 nanofibers. J. Nanopart. Res., 2017, 19, 129.

22. Zhang W.F., Zhang M.S., Yin Z., Chen Q. Photoluminescence in anatase titanium dioxide nanocrystals. Appl. Phys. B, 2000, 70, P. 262-265.

23. Preclikova J., Galar P., et al. Nanocrystalline titanium dioxide films: Influence of ambient conditions on surface- and volume-related photoluminescence. J. of Appl. Phys., 2010, 108, P. 113502.

24. Knorr F.J., Mercado C.C., McHale J.L. Trap-state distributions and carrier transport in pure and mixed-phase TiO2: influence of contacting solvent and interphasial electron transfer. J. Phys. Chem. C, 2008, 112, P. 12786-12794.

25. Shi J., Chen J., et al. Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J. Phys. Chem. C, 2007, 111, P. 693-699.

26. Wang X., Feng Z., et al. Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation conditio. PCCP, 2010, 12, P. 7083-7090.

27. Pallotti D.K., Passoni L., et al. Photoluminescence mechanisms in anatase and rutile TiO2. J. Phys. Chem. C, 2017, 121, P. 9011-9021.

28. Mascaretti L., Russo V., et al. Excitation wavelength- and medium-dependent photoluminescence of reduced nanostructured TiO2 films. J. Phys. Chem. C, 2019, 123, P. 11292-11303.

29. Bellardita M., Paolaa A., et al. Preparation and photoactivity of samarium loaded anatase, brookite and rutile catalysts. Appl. Catalysis B: Environmental, 2011, 104, P. 291-299.

30. Santara B., Giri P.K., Imakita K., Fujii M. Evidence for Ti interstitial induced extended visible absorption and near infrared photoluminescence from undoped TiO2 nanoribbons: an in situ photoluminescence study. J. Phys. Chem. C, 2013, 117, P. 23402-23411.

31. Ulyanova E.S., Zamyatin D.A., Kolosov V.Yu., Shalaeva E.V. Visible light photoluminescence in TiO2/CdS nanopowders synthesized by sol-gel route: effect of gel aging time. Nanosystems: Phys. Chem. Math., 2020, 11, P. 480-487.

32. Lopez R., Gomez R. Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J. Sol-gel Sci Technol., 2012, 61, P. 1-7.

33. Iliev M.N., Hadjiev V.G., Litvinchuk A.P. Raman and infrared spectra of brookite (TiO2): Experiment and theory. Vibrational spectroscopy, 2013, 64, P. 148-152.

34. Ohsaka T., Izumi F., Fujiki Y. Raman Spectrum of Anatase, TiO. J. of Raman Spectroscopy, 1978, 7, P. 321-324.

35. Gupta S.K., Desai R., et al. Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J. of Raman Spectroscopy, 2010, 41, P. 350-355.

36. Sahoo S., Arora A.K., Sridharan V. Raman line shapes of optical phonons of different symmetries in anatase TiO2 nanocrystals. J. Phys. Chem. C, 2009, 113, P. 16927-16933.

37. Georgescu D., Baia L., et al. Experimental assessment of the phonon confinement in TiO2 anatase nanocrystallites by Raman spectroscopy. J. of Raman Spectroscopy, 2012, 43, P. 876-883.

38. Ceballos-Chuc M.C., Ramos-Castillo C.M., et al. The influence of brookite impurities on the Raman spectrum of TiO2 anatase nanocrystals. J. Phys. Chem. C, 2018, 123, P. 19921-19930.

39. Ho Y.C., Hoque N.F., et al. Reduction of oxygen vacancy related traps in TiO2 and the impacts on hybrid perovskite solar cells. J. Phys. Chem. C, 2017, 121, P. 23939-23946.

40. Lin H., Huang C.P., et al. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catalysis B: Environmental, 2006, 68, P. 1-11.

41. Moss T.S., Burrell G.J., Ellis B. Semiconductor Opto-electronics. Butterworths, London, 1973.

42. Bost M.C. Mahan J.E. An investigation of the optical constants and band gap of chromium disilicide. J. Appl. Phys., 1988, 63, P. 839-844.


Review

For citations:


Ulyanova E.S., Shalaeva E.V., Ponosov Yu.S., Lipina O.A., Markov A.A. Near-IR photoluminescence and structural properties of TiO2 powders with nanocrystalline anatase/brookite matrix. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(4):445-455. https://doi.org/10.17586/2220-8054-2022-13-4-445-455

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)