Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Ageing of graphene oxide thin films: the dynamics of gas and water vapors permeability in time

https://doi.org/10.17586/2220-8054-2022-13-4-468-474

Abstract

Composite membranes are formed based on ultrathin 20 nm-thick selective layers of graphene oxide nanoflakes deposited on porous anodic alumina substrates. The long-term dynamics of permanent gases transport and water vapor permeability across the composite membranes is measured during 240 days (8 months). It is revealed that the permeability towards permanent gases remains nearly constant during a prolonged period of time. Contrary, water vapor flux decreases rapidly within the first 30 days from the membrane preparation moment and reaches about 80% of permeability loss during 8 months. The rapid decrease of membrane permeability during the first month could be attributed to a gradual packing of graphene oxide nanoflakes, particularly, locating in the surface sublayers, into more tight microstructure due to the evaporation of remaining solvent (membrane drying) under ambient conditions. Further decrease in permeability during more prolonged time could be caused additionally by deoxygenation of surface GO nanoflakes preventing water vapors diffusion into the GO film. This phenomenon, the so called “ageing” accompanies graphene oxide thin films similarly to some types of highly-permeable polymers. Holding the aged membrane under saturated water vapors, and even liquid water, didn’t allow one to revitalize completely its permeability. The obtained results should be taken into account when designing membranes and other devices based on graphene oxide and its derivatives.

About the Authors

E. A. Chernova
Lomonosov Moscow State University
Russian Federation


K. E. Gurianov
Lomonosov Moscow State University
Russian Federation


M. V. Berekchiian
Lomonosov Moscow State University
Russian Federation


V. A. Brotsman
Lomonosov Moscow State University
Russian Federation


R. G. Valeev
Udmurt Federal Research Center of the Ural Brunch of Russian Academy of Sciences
Russian Federation


O. O. Kapitanova
Lomonosov Moscow State University
Russian Federation


A. V. Kirianova
Lomonosov Moscow State University
Russian Federation


A. V. Lukashin
Lomonosov Moscow State University
Russian Federation


References

1. Su P., Wang F., Li Z., Tang C.Y., Li W. Graphene oxide membranes: controlling their transport pathways. J. Mater. Chem. A, 2020. 8(31), P. 15319-15340.

2. Nag A., Mitra A., Mukhopadhyay S.C. Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 2018, 270, P. 177-194.

3. Butun S., Demirci S.,Yasar A.O.,Sagbas S.,Aktas N.,Sahiner N. Chapter 9 - 0D, 1D, 2D, and 3D Soft and Hard Templates for Catalysis. Morphological, Compositional, and Shape Control of Materials for Catalysis, 2017, 177, P. 317-357.

4. Petukhov D.I., Chernova E., Kapitanova O., Boytsova O., Valeev R., Chumakov A.P., Konovalov O., Eliseev A.A. Thin graphene oxide membranes for gas dehumidification. Journal of Membrane Science, 2019, 577, P. 184-194.

5. Chernova E., Petukhov D., Kapitanova O., Boytsova O., Lukashin A., Eliseev A. Nanoscale architecture of graphene oxide membranes for improving dehumidification performance. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(5), P. 614-621.

6. Chernova E.A., Petukhov D.I., Chumakov A.P., Kirianova A.V., Sadilov I.S., Kapitanova O.O., Boytsova O.V., Valeev R.G., Roth S.V., Eliseev A., Eliseev A. The role of oxidation level in mass-transport properties and dehumidification performance of graphene oxide membranes. Carbon, 2021, 183, P. 404-414.

7. Tsou C.-H., An Q.-F., Lo S.-C., De Guzman M., Hung W.-S., Hu C.-C., Lee K., Lai J.-Y. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science, 2015, 477, P. 93-100.

8. Mu¨ller N., Handge U.A., Abetz V. Physical ageing and lifetime prediction of polymer membranes for gas separation processes. Journal of Membrane Science, 2016, 516, P. 33-46.

9. Iakunkov A., Sun J., Rebrikova A., Korobov M., Klechikov A., Vorobiev A., Boulanger N., Talyzin A.V. Swelling of graphene oxide membranes in alcohols: effects of molecule size and air ageing. J. Mater. Chem. A, 2019, 7(18), P. 11331-11337.

10. Li C., Lu Y., Yan J., Yu W., Zhao R., Du S., Niu K. Effect of long-term ageing on graphene oxide: structure and thermal decomposition. Royal Society Open Science, 2021, 8(12), P. 202309.

11. Gyarmati B., Farah S., Farkas A., Sa´fra´n G., Voelker-Pop L.M., La´szlo´ K. Long-Term Aging of Concentrated Aqueous Graphene Oxide Suspensions Seen by Rheology and Raman Spectroscopy. Nanomaterials (Basel, Switzerland), 2022, 12(6).

12. Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved Synthesis of Graphene Oxide. ACS Nano, 2010, 4(8), P. 4806-4814.

13. Petukhov D.I., Buldakov D.A., Tishkin A.A., Lukashin A.V., Eliseev A.A. Liquid permeation and chemical stability of anodic alumina membranes. Beilstein Journal of Nanotechnology, 2017, 8, P. 561-570.

14. Petukhov D.I., Eliseev A.A. Gas permeation through nanoporous membranes in the transitional flow region. Nanotechnology, 2016, 27(8), P. 085707.

15. Petukhov D.I., Napolskii K.S., Eliseev A.A. Permeability of anodic alumina membranes with branched channels. Nanotechnology, 2012, 23(33), P. 335601.

16. Park S., An J., Jung I., Piner R.D., An S.J., Li X., Velamakanni A., Ruoff R.S. Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents. Nano Letters, 2009, 9(4), P. 1593-1597.

17. Chernova E., Petukhov D., Boytsova O., Alentiev A., Budd P., Yampolskii Y., Eliseev A. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes. Scientific Reports, 2016, 6, P. 31183.

18. Petukhov D.I., Chernova E.A., Kapitanova O.O., Boytsova O.V., Valeev R.G., Chumakov A.P., Konovalov O.V., Eliseev A.A. Thin graphene oxide membranes for gas dehumidification. Journal of Membrane Science, 2019, 577, P. 184-194.

19. Guan K., Shen J., Liu G., Zhao J., Zhou H., Jin W. Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport. Separation and Purification Technology, 2017, 174, P. 126-135.

20. Nair R.R., Wu H.A., Jayaram P.N., Grigorieva I.V., Geim A.K. Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science, 2012, 335(6067), P. 442 LP - 444.

21. Kim D.W., Kim H., Jin M.L., Ellison C.J. Impermeable gas barrier coating by facilitated diffusion of ethylenediamine through graphene oxide liquid crystals. Carbon, 2019, 148, P. 28-35.

22. Yeh C.-N., Raidongia K., Shao J., Yang Q.-H., Huang J. On the origin of the stability of graphene oxide membranes in water. Nature Chemistry, 2015, 7(2), P. 166-170.

23. Athanasekou C., Pedrosa M., Tsoufis T., Pastrana-Mart´ınez L.M., Romanos G., Favvas E., Katsaros F., Mitropoulos A., Psycharis V., Silva A.M.T.Comparison of self-standing and supported graphene oxide membranes prepared by simple filtration: Gas and vapor separation, pore structure and stability. Journal of Membrane Science, 2017, 522, P. 303-315.

24. Swaidan R., Ghanem B., Litwiller E., Pinnau I. Physical Aging, Plasticization and Their Effects on Gas Permeation in “Rigid” Polymers of Intrinsic Microporosity. Macromolecules, 2015, 48(18), P. 6553-6561.

25. Harms S., Ra¨tzke K., Faupel F., Chaukura N., Budd P.M., Egger W., Ravelli L. Aging and Free Volume in a Polymer of Intrinsic Microporosity (PIM-1). The Journal of Adhesion, 2012, 88(7), P. 608-619.

26. Chernova E.A., Roslyakov I.V., Dorofeev S.G., Lukashin A.V.Composite membranes based on geometrically constrained PIM-1 for dehumidification of gas mixtures. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10(3), P. 282-288.

27. Chen X., Yang Z., Feng S., Golbek T.W., Xu W., Butt H.-J., Weidner T., Xu Z., Hao J., Wang Z. How Universal Is the Wetting Aging in 2D Materials. Nano Letters, 2020, 20(8), P. 5670-5677.


Review

For citations:


Chernova E.A., Gurianov K.E., Berekchiian M.V., Brotsman V.A., Valeev R.G., Kapitanova O.O., Kirianova A.V., Lukashin A.V. Ageing of graphene oxide thin films: the dynamics of gas and water vapors permeability in time. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(4):468-474. https://doi.org/10.17586/2220-8054-2022-13-4-468-474

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)