Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Теорема существования и единственности слабого решения дробной параболической задачи методом Роте

https://doi.org/10.17586/2220-8054-2024-15-1-5-15

Аннотация

Целью данной работы является исследование существования и единственности слабого решения краевой задачи дробного уравнения по времени, включающего дробную производную Капуто с интегральным оператором. Используя метод дискретизации, мы сначала получаем некоторые априорные оценки приближенных решений в точках (x, tj). Затем мы оценим точность предложенного метода, чтобы продемонстрировать, что реализованная последовательность α-функций Роте сходится в определенном смысле, а ее предел является решением (в слабом смысле) нашей задачи. Следует отметить, что построенная схема L1 предназначена для аппроксимации упомянутой в задаче дробной производной Капуто.

Об авторах

Ю. Бекакра
ICOSI Laboratory, Abbes Laghrour University
Алжир


А. Бузиани
ICOSI Laboratory, Abbes Laghrour University; L’arbi Ben M’hidi University
Алжир


Список литературы

1. Carpinteri A., Mainardi F. Fractals and Fractional Calculus in Continuum Mechanics. Springer, Berlin, 1997.

2. Tien D. Fractional stochastic differential equations with applications to finance. Journal of Mathematical Analysis and Applications, 2013, 397(1), P. 334–348.

3. Kenneth S.M., Betram R. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, NewYork, 1993.

4. West B.J., Grigolini P. Applications of Fractional Calculus in Physics. World Scientific, Singapore, 1998.

5. Vineet K.S., Sunil K., Mukesh K.A., Brajesh K.S. Two-dimensional time fractional-order biological population model and its analytical solution. Egyptian Journal of Basic and Applied Sciences, 2014, 1(1), P. 71–76.

6. Ahmad H., Hossein J., Pranay G., Vernon Ariyan. Solving Time-Fractional Chemical Engineering Equations. Thermal Science, 2020, 24(1), P. 157–164.

7. Khan N.A., Asmat A., Amir M. Approximate solution of time-fractional chemical engineering equations: a comparative study. International Journal of Chemical Reactor Engineering, 2010, 8(1). Article A19.

8. Aman S., Khan I., Ismail Z., Salleh M.Z. Tlili I. A new Caputo time fractional model for heat transfer enhancement of water based graphene nanofluid. An application to solar energy. Results in Physics, 2018, 9, P. 1352–1362.

9. Aman S., Khan I., Ismail Z., Salleh M.Z. Applications of fractional derivatives to nanofluids: exact and numerical solutions. Mathematical Modelling of Natural Phenomena, 2018, 13(1), P. 1–12.

10. Hasin F., Ahmad Z., Ali F., Khan N., Khan I. A time fractional model of Brinkman-type nanofluid with ramped wall temperature and concentration. Advances in Mechanical Engineering, 2022, 14(5), 168781322210960.

11. Baleanu D., Guvenc Z.B., Machado J.A.T. New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Netherlands, 2009.

12. Zada L., Rashid N., Samia S.B. An efficient approach for solution of fractional order differential-difference equations arising in nanotechnology. Applied Mathematics E-Notes, 2020, P. 297–307.

13. Aldea A., Barsan V. Trends in nanophysics. Springer, Berlin Heidelberg, 2010.

14. Lobo R.F., Pinheiro M.J. Advanced Topics in Contemporary Physics for Engineering: Nanophysics, Plasma Physics, and Electrodynamics. CRC Press, 2022.

15. Uchaikin V.V. Fractional derivatives for physicists and engineers Berlin: Springer, 2013.

16. Nazdar A.A., Davood R. Identifying an unknown time-dependent boundary source in time-fractional diffusion equation with a non-local boundary condition. Journal of Computational and Applied Mathematics, 2019, 355, P. 36–50.

17. Sobirov Z.A., Rakhimov K.U., Ergashov R.E. Green’s function method for time-fractional diffusion equation on the star graph with equal bonds. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12(3), P. 271–278.

18. Bahuguna D., Jaiswal A. Application of Rothe’s method to fractional differential equations. Malaya Journal of Matematik, 2019, 7(3), P. 399–407.

19. Zeng B. Existence for a class of time-fractional evolutionary equations with applications involving weakly continuous operator. Fractional Calculus and Applied Analysis, 2023, 26, P. 172–192.

20. Raheem A., Bahuguna D. Rothe’s method for solving some fractional integral diffusion equation. Applied Mathematics and Computation, 2014, 236, P. 161–168.

21. Yang Z. A finite difference method for fractional partial differential equation. Applied Mathematics and Computation, 2009, 215(2), P. 524–529.

22. Du G., Lu C., juang Y. Rothe’s method for solving multi-term Caputo-Katugampola fractional delay integral diffusion equations. Mathematical Methods in the Applied Siences, 2023, 45(12), P. 7426–7442.

23. Lin Y., Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics, 2007, 225, P. 1533–1552.

24. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam. 2006.

25. Li C., Weihua D. Remarks on fractional derivatives, Applied Mathematics and Computation, 2007, 187(2), P. 777–784.

26. Rektorys.K. The Method of Discretization in Time and Partial Differential Equations D. Reidel Publishing Company, Dordrecht. 1982.

27. Alikhanov A.A. A priori estimates for solutions of boundary value problems for fractional-order equations. Differential Equations, 2010, 46(5), P. 660–666.


Рецензия

Для цитирования:


Бекакра Ю., Бузиани А. Теорема существования и единственности слабого решения дробной параболической задачи методом Роте. Наносистемы: физика, химия, математика. 2024;15(1):5-15. https://doi.org/10.17586/2220-8054-2024-15-1-5-15

For citation:


Bekakra Y., Bouziani A. Existence and uniqueness theorem for a weak solution of fractional parabolic problem by the Rothe method. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(1):5-15. https://doi.org/10.17586/2220-8054-2024-15-1-5-15

Просмотров: 11


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)