Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Double ring polariton condensates with polariton vortices

https://doi.org/10.17586/2220-8054-2022-13-6-608-614

Abstract

We study formation of persistent currents of exciton polaritons in annular polariton condensates in a cylindrical micropillar cavity under the spatially localised nonresonant optical pumping. Since polariton condensates are strongly nonequilibrium systems, the trapping potential for polaritons, formed by the pillar edge and the reservoir of optically induced incoherent excitons, is not real in general case. Its imaginary part includes the spatially distributed gain from the pump and losses of polaritons in the condensate. We show that engineering the gain-loss balance in the micropillar plane gives one an access to the excited states of the polariton condensate. We demonstrate, both theoretically and experimentally, the formation of vortices in double concentric ring polariton condensates in the case of complex annular trap potential.

About the Authors

E. S. Sedov
Westlake University; Westlake Institute for Advanced Study; St. Petersburg State University; Vladimir State University
Russian Federation


V. A. Lukoshkin
St. Petersburg State University; Ioffe Institute
Russian Federation


V. K. Kalevich
St. Petersburg State University; Ioffe Institute
Russian Federation


I. Yu. Chestnov
ITMO University; Vladimir State University
Russian Federation


Z. Hatzopoulos
FORTH-IESL
Russian Federation


P. G. Savvidis
Westlake University; Westlake Institute for Advanced Study; FORTH-IESL; University of Crete
Russian Federation


A. V. Kavokin
Westlake University; Westlake Institute for Advanced Study; St. Petersburg State University; Moscow Institute of Physics and Technology
Russian Federation


References

1. Kavokin A., Baumberg J., Malpuech G., Laussy F. Microcavities, 2nd ed., Series on Semiconductor Science and Technology, Oxford University Press, Oxford, 2017, xxx+592 p.

2. Sanvitto D., Marchetti F.M., Szyman´ska M.H., et al. Persistent currents and quantized vortices in a polariton superfluid. Nature Physics, 2010, 6(7), P. 527-533.

3. Carusotto I., Ciuti C. Quantum fluids of light. Review of Modern Physics, 2013, 85(1), P. 299-366.

4. Nalitov A.V., Liew T.C.H., Kavokin A.V., Altshuler B.L., Rubo Y.G. Spontaneous Polariton Currents in Periodic Lateral Chains. Physical Review Letters, 2017, 119(6), P. 067406.

5. Lukoshkin V.A., Kalevich V.K., Afanasiev M.M., et al. Persistent circular currents of exciton-polaritons in cylindrical pillar microcavities. Physical Review B, 2018, 97(19), P. 195149.

6. Sedov E., Lukoshkin V., Kalevich V., et al. Persistent Currents in Half-Moon Polariton Condensates. ACS Photonics, 2020, 7, P. 1163-1170.

7. Sedov E.S., Lukoshkin V.A., Kalevich V.K., et al. Circular polariton currents with integer and fractional orbital angular momenta. Physical Review Research, 2021, 3(1), P. 013072.

8. Sedov E., Arakelian S., Kavokin A. Spontaneous symmetry breaking in persistent currents of spinor polaritons. Scientific Reports, 2021, 11, P. 22382.

9. Xue Y., Chestnov I., Sedov E., et al. Split-ring polariton condensates as macroscopic two-level quantum systems. Physical Review Research, 2021, 3(1), P. 013099.

10. Lagoudakis K.G., Wouters M., Richard M., et al. Quantized Vortices in an Exciton-Polariton Condensate. Nature Physics, 2008, 4, P. 706-710.

11. Kalevich V.K., Afanasiev M.M., Lukoshkin V.A., et al. Controllable structuring of exciton-polariton condensates in cylindrical pillar microcavities. Physical Review B, 2015, 91(4), P. 045305.

12. Dreismann A., Cristofolini P., Balili R., et al. Coupled counterrotating polariton condensates in optically defined annular potentials. PNAS, 2014, 111(24), P. 8770-8775.

13. Lukoshkin V.A., Sedov E.S., Kalevich V.K., et al., Steady state oscillations of circular currents in concentric polariton condensates, 2022.

14. Kavokin A., Liew T.C.H., Schneider C., et al. Polariton condensates for classical and quantum computing. Nature Reviews Physics, 2022, 4, P. 435-451.

15. Wouters M. Energy relaxation in the mean-field description of polariton condensates. New Journal of Physics, 2012,14, P. 075020.

16. Wertz E., Amo A., Solnyshkov D.D., et al. Propagation and Amplification Dynamics of 1D Polariton Condensates. Physical Review Letters, 2012, 109(21), P. 216404.

17. Barrat J., Cherbunin R., Sedov E., et al. Stochastic circular persistent currents of exciton polaritons, 2022.

18. Cherotchenko E.D., Sigurdsson H., Askitopoulos A., Nalitov A.V. Optically controlled polariton condensate molecules. Physical Review B, 2021, 103(11), P. 115309.

19. Schmutzler J., Lewandowski P., Aßmann M., et al. All-optical flow control of a polariton condensate using nonresonant excitation. Physical Review B, 2015, 91(19), P. 195308.

20. Askitopoulos A., Nalitov A.V., Sedov E.S., et al. All-optical quantum fluid spin beam splitter. Physical Review B, 2018, 97(23), P. 235303.


Review

For citations:


Sedov E.S., Lukoshkin V.A., Kalevich V.K., Chestnov I.Yu., Hatzopoulos Z., Savvidis P.G., Kavokin A.V. Double ring polariton condensates with polariton vortices. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):608-614. https://doi.org/10.17586/2220-8054-2022-13-6-608-614

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)