Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Investigation of the method of current thermal modulation of the wavelength VCSEL

https://doi.org/10.17586/2220-8054-2022-13-6-615-620

Abstract

Subject of investigation. In this paper, we analyzed in detail the thermal mode of the operation of a vertical-cavity surface-emitting laser (VCSEL) used in the experiment. Method. As a part of the work, we carried out a theoretical study of the recurrence relation describing the change in the VCSEL wavelength under the action of specially selected modulation current pulses. The high speed of the device working is determined by the optical demodulation scheme, which is based on using a phase-modulated carrier (the demodulation method used is arctangent demodulation: Phase Generated Carrier (PGC-ATAN)). Main results. Formulas were obtained that determine the frequency, phase, and modulation depth which leads to calculation of the principle of change in the modulated VCSEL wavelength at sampling points. Comparison with experimental data showed that the obtained formulas allow one to choose the optimal thermal mode of VCSEL operation and reliably calculate the characteristics of the modulation process in terms of the carrier phase. Practical significance. The obtained formulas make it possible to calculate the exact characteristics of the modulation process, and the precisely calculated phase of the modulation source. As a result, one can compensate it more effectively when demodulating phase of the interferometer.

About the Authors

G. P. Miroshnichenko
ITMO University
Russian Federation


A. N. Arzhanenkova
ITMO University
Russian Federation


M. Yu. Plotnikov
ITMO University
Russian Federation


References

1. Kivshar Yu.S. From metamaterials to metasurfaces and metadevices. Nanosystems: physics, chemistry, mathematics, 2015, 6(3), P. 346-352.

2. Iga K. Surface-Emitting Laser-Its Birth and Generation of New Optoelectronics Field. IEEE J. Sel. Top. In Qu. El., 2000, 6(6), P. 1201.

3. Rashidul Hasan R., Basak R. Characteristics of a Designed 1550 nm AlGaInAs/InP MQW VCSEL.Int. J. Multidis. Scien. Eng., 2013, 4(1), P. 5-9.

4. Jungo M., Monti di Sopra F., Erni D., Baechtold W. Scaling effects on vertical-cavity surface-emitting lasers static and dynamic behavior. Journal of Applied Physics, 2002, 91(9), P. 5550-5557.

5. Bjerkan L., Royset A., Hafskjaer L., and Myhre D. Measurement of Laser Parameters for Simulation of High-speed Fiberoptic Systlems. J. Lightwave Technol., 1996, 15, P. 839.

6. Tucker R.S. High-speed Modulation of Semiconductor Lasers. IEEE Trans. El. Dev., 1985, ED-32(1)2, P. 2572.

7. Chen J., Hangauer A., Strzoda-Markus-Christian Amann R. Experimental characterization of the frequency modulation behavior of vertical cavity surface emitting lasers. Appl. Phys. Lett., 2007, 91, P. 141105.

8. Dutta N.K., Tayahi M. and Choquette K.D. Transmission experiments using oxide confined vertical cavity surface emitting lasers. Electronics Letters, 1997, 33(13), P. 1147-1148.

9. Meng Xun, Guanzhong Pan, Zhuangzhuang Zhao, Yun Sun, Chengyue Yang, Qiang Kan, Jingtao Zhou, and Dexin Wu. Analysis of Thermal Properties of 940-nm Vertical Cavity Surface Emitting Laser Arrays. IEEE Trans. El. Devices, 2021, 68(1), P. 158-163.

10. Larsson A., Carlsson C., Gustavsson J., Haglund E., Modh P., Bengtsson J. Direct high-frequency modulation of VCSELs and applications in fibre optic RF and microwave links. New J. Phys., 2004, 6, P. 176.

11. Nikitenko A., Plotnikov M., Volkov A. PGC-ATAN demodulation scheme with the Carrier Phase Delay Compensation for Fiber-Optic Interfero-metric sensors. IEEE Sensors Journal, 2018, 18(5), P. 1985-1992.

12. Volkov A.V., Oskolkova E.S., Plotnikov M.Yu., Mekhrengin M.V., Shuklin P.A. Phase shift influence research of the reference oscillator signal on the output signal in homodyne demodulation scheme. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, 15(4), P. 608-614.

13. Huang S.-C., Lin H. Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber. Applied Optics, 2007, 46(31), P. 7594-7603.

14. Carlsson C., Martinsson H., Schatz R., Halonen J., Larsson A. Analog Modulation Properties of Oxide Confined VCSELs at Microwave Frequencies. J. Light. Tech., 2002, 20(9), P. 1740-1749.

15. Yang Yi, Ruan Yu, Li Zhengjia. Rate-equation-based Thermal VCSEL Model and its Equivalent Circuit Application in Transceiver Module Design. J. Opt.Commun., 2002, 236, P. 205-208.

16. Mena P.V., Morikuni J.J., Kang S.-M., Harton A.V., and Wyatt K.W. A Simple Rate-Equation-Based Thermal VCSEL Model. J. Ligt. Tech., 1999, 17(5), P. 865-872.

17. Garciaand V.G., Farzane M. Transient thermal imaging of a vertical cavity surface-emitting laser using thermoreflectance microscopy. Journal of Applied Physics, 2016, 119, P. 045105.

18. Chen G., Tien C.L., Wu X., Smith J.S. Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures. Journal of Heat Transfer, Transactions ASME, 1994, 116(2), P. 325-331.

19. Zhao Y.-G. and McInemey J.G. Transient Temperature Response of Vertical-Cavity Surface-Emitting Semiconductor Lasers. IEEE J. Quant. El., 1995, 31(9), P. 1668-1673.

20. Kobayashi S., Yamamoto Y., Ito M., Kimura T. Direct Frequency Modulation in AlGaAs Semiconductor Lasers. IEEE Transactions on Microwave Theory and Techniques, 1982, MTT-30(4), P. 428.

21. Kireenkov A.Yu., Aleinik A.S., Plotnikov M.Yu., Mekhrengin M.V. Patent No. 2646420. Method for frequency-pulse modulation of a semiconductor laser source of optical radiation for interrogating optical interferometric sensors.Russian Federation, IPC: H01S 5/042, G01B 9/02, G02F1/00. Priority from 11/23/2016.

22. Belikin M.N., Kulikov A.V., Strigalev V.E., Aleinik A.S., and Kireenkov A.Yu. Study of a compact radiation source for fiber-optic interferometric phase sensors. J. Opt. Technol., 2015, 82(12), P. 805-809.

23. Belikin M.N. Small-sized high-speed spectral response recorder for fiber-optical Bragg-gratings sensors. PhD dissertation in technical sciences, Saint Petersburg, 2016, P. 95-104.

24. Kireenkov A.Yu. Fiber-optic interferometric methods for constructing measuring systems based on a surface-emitting laser. PhD dissertation in physical sciences, Saint Petersburg, 2017, P. 90-108.


Review

For citations:


Miroshnichenko G.P., Arzhanenkova A.N., Plotnikov M.Yu. Investigation of the method of current thermal modulation of the wavelength VCSEL. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):615-620. https://doi.org/10.17586/2220-8054-2022-13-6-615-620

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)