Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Исследование метода токовой тепловой модуляции длины волны VCSEL

https://doi.org/10.17586/2220-8054-2022-13-6-615-620

Аннотация

Предмет исследования. В работе детально проанализирован применяемый в экперименте тепловой режим работы вертикально-излучающего лазера (Vertical-cavity surface-emitting laser-VCSEL). Метод. В рамках работы было проведено теоретическое исследование рекуррентного соотношения, описывающего изменение длины волны VCSEL под действием специально выбранных импульсов тока модуляции. Высокоскоростные свойства прибора определяются оптической схемой демодуляции, в которой использована промодулированная по фазе несущая (используемый метод демодуляции - демодуляция на основе вычислений функции арктангенса: Phase Generated Carrier (PGC-ATAN)). Основные результаты. В рамках данной работы были получены формулы, определяющие частоту, фазу и глубину модуляции, для расчёта закона изменения промодулированной длины волны VCSEL в точках дискретизации. Сравнение с экспериментальными данными показало, что полученные формулы позволяют выбрать оптимальный тепловой режим работы VCSEL и надёжно рассчитать характеристики процесса модуляции по фазе несущей. Практическая значимость. Полученные формулы позволяют рассчитать точные характеристики процесса модуляции, а точно рассчитанная фаза источника модуляции позволит эффективнее её компенсировать в процессе демодуляции фазы сигнала интерферометра.

Об авторах

Г. П. Мирошниченко
Университет ИТМО
Россия


А. Н. Аржаненкова
Университет ИТМО
Россия


М. Ю. Плотников
Университет ИТМО
Россия


Список литературы

1. Kivshar Yu.S. From metamaterials to metasurfaces and metadevices. Nanosystems: physics, chemistry, mathematics, 2015, 6(3), P. 346-352.

2. Iga K. Surface-Emitting Laser-Its Birth and Generation of New Optoelectronics Field. IEEE J. Sel. Top. In Qu. El., 2000, 6(6), P. 1201.

3. Rashidul Hasan R., Basak R. Characteristics of a Designed 1550 nm AlGaInAs/InP MQW VCSEL.Int. J. Multidis. Scien. Eng., 2013, 4(1), P. 5-9.

4. Jungo M., Monti di Sopra F., Erni D., Baechtold W. Scaling effects on vertical-cavity surface-emitting lasers static and dynamic behavior. Journal of Applied Physics, 2002, 91(9), P. 5550-5557.

5. Bjerkan L., Royset A., Hafskjaer L., and Myhre D. Measurement of Laser Parameters for Simulation of High-speed Fiberoptic Systlems. J. Lightwave Technol., 1996, 15, P. 839.

6. Tucker R.S. High-speed Modulation of Semiconductor Lasers. IEEE Trans. El. Dev., 1985, ED-32(1)2, P. 2572.

7. Chen J., Hangauer A., Strzoda-Markus-Christian Amann R. Experimental characterization of the frequency modulation behavior of vertical cavity surface emitting lasers. Appl. Phys. Lett., 2007, 91, P. 141105.

8. Dutta N.K., Tayahi M. and Choquette K.D. Transmission experiments using oxide confined vertical cavity surface emitting lasers. Electronics Letters, 1997, 33(13), P. 1147-1148.

9. Meng Xun, Guanzhong Pan, Zhuangzhuang Zhao, Yun Sun, Chengyue Yang, Qiang Kan, Jingtao Zhou, and Dexin Wu. Analysis of Thermal Properties of 940-nm Vertical Cavity Surface Emitting Laser Arrays. IEEE Trans. El. Devices, 2021, 68(1), P. 158-163.

10. Larsson A., Carlsson C., Gustavsson J., Haglund E., Modh P., Bengtsson J. Direct high-frequency modulation of VCSELs and applications in fibre optic RF and microwave links. New J. Phys., 2004, 6, P. 176.

11. Nikitenko A., Plotnikov M., Volkov A. PGC-ATAN demodulation scheme with the Carrier Phase Delay Compensation for Fiber-Optic Interfero-metric sensors. IEEE Sensors Journal, 2018, 18(5), P. 1985-1992.

12. Volkov A.V., Oskolkova E.S., Plotnikov M.Yu., Mekhrengin M.V., Shuklin P.A. Phase shift influence research of the reference oscillator signal on the output signal in homodyne demodulation scheme. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, 15(4), P. 608-614.

13. Huang S.-C., Lin H. Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber. Applied Optics, 2007, 46(31), P. 7594-7603.

14. Carlsson C., Martinsson H., Schatz R., Halonen J., Larsson A. Analog Modulation Properties of Oxide Confined VCSELs at Microwave Frequencies. J. Light. Tech., 2002, 20(9), P. 1740-1749.

15. Yang Yi, Ruan Yu, Li Zhengjia. Rate-equation-based Thermal VCSEL Model and its Equivalent Circuit Application in Transceiver Module Design. J. Opt.Commun., 2002, 236, P. 205-208.

16. Mena P.V., Morikuni J.J., Kang S.-M., Harton A.V., and Wyatt K.W. A Simple Rate-Equation-Based Thermal VCSEL Model. J. Ligt. Tech., 1999, 17(5), P. 865-872.

17. Garciaand V.G., Farzane M. Transient thermal imaging of a vertical cavity surface-emitting laser using thermoreflectance microscopy. Journal of Applied Physics, 2016, 119, P. 045105.

18. Chen G., Tien C.L., Wu X., Smith J.S. Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures. Journal of Heat Transfer, Transactions ASME, 1994, 116(2), P. 325-331.

19. Zhao Y.-G. and McInemey J.G. Transient Temperature Response of Vertical-Cavity Surface-Emitting Semiconductor Lasers. IEEE J. Quant. El., 1995, 31(9), P. 1668-1673.

20. Kobayashi S., Yamamoto Y., Ito M., Kimura T. Direct Frequency Modulation in AlGaAs Semiconductor Lasers. IEEE Transactions on Microwave Theory and Techniques, 1982, MTT-30(4), P. 428.

21. Kireenkov A.Yu., Aleinik A.S., Plotnikov M.Yu., Mekhrengin M.V. Patent No. 2646420. Method for frequency-pulse modulation of a semiconductor laser source of optical radiation for interrogating optical interferometric sensors.Russian Federation, IPC: H01S 5/042, G01B 9/02, G02F1/00. Priority from 11/23/2016.

22. Belikin M.N., Kulikov A.V., Strigalev V.E., Aleinik A.S., and Kireenkov A.Yu. Study of a compact radiation source for fiber-optic interferometric phase sensors. J. Opt. Technol., 2015, 82(12), P. 805-809.

23. Belikin M.N. Small-sized high-speed spectral response recorder for fiber-optical Bragg-gratings sensors. PhD dissertation in technical sciences, Saint Petersburg, 2016, P. 95-104.

24. Kireenkov A.Yu. Fiber-optic interferometric methods for constructing measuring systems based on a surface-emitting laser. PhD dissertation in physical sciences, Saint Petersburg, 2017, P. 90-108.


Рецензия

Для цитирования:


Мирошниченко Г.П., Аржаненкова А.Н., Плотников М.Ю. Исследование метода токовой тепловой модуляции длины волны VCSEL. Наносистемы: физика, химия, математика. 2022;13(6):615-620. https://doi.org/10.17586/2220-8054-2022-13-6-615-620

For citation:


Miroshnichenko G.P., Arzhanenkova A.N., Plotnikov M.Yu. Investigation of the method of current thermal modulation of the wavelength VCSEL. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):615-620. https://doi.org/10.17586/2220-8054-2022-13-6-615-620

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)