Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Features of tunneling current-voltage characteristics in dielectric films with Ni, Fe and Co nanoparticles, investigated by conductive AFM and within the framework of the theory of 1D-dissipative tunneling

https://doi.org/10.17586/2220-8054-2022-13-6-621-627

Abstract

In this work, we have experimentally investigated the features of tunneling current-voltage (I-V) curves in the case of 1D-dissipative tunneling in the limit of weak dissipation for various both synthesized (and in the process of synthesis) metallic nanoparticles (NPs) (Ni, Co, Fe) in a combined atomic force microscope/scanning tunneling microscope (AFM/STM) system in an external electric field. It is shown that for individual tunneling I-V curves, a single peak is observed at one of the polarities. In the process of synthesizing metallic nanoparticles with a change in polarity, instead of nanoclusters, it is possible to synthesize toroidal structures (shown by the example of “growing” Ni-NPs). The investigated effects of 1D-dissipative tunneling made it possible to develop the author’s method of controlled growth of quantum dots in a combined AFM/STM system. A qualitative agreement was obtained between the experimental and theoretical results, which allows us to assume the possibility of experimental observation of the macroscopic dissipative tunneling effects and thereby confirm the hypothesis expressed in the pioneering works of A. J. Leggett, A. I. Larkin, Yu. N. Ovchin- nikov and other authors.

About the Authors

M. B. Semenov
Penza State University
Russian Federation


V. D. Krevchik
Penza State University
Russian Federation


D. O. Filatov
Lobachevsky State University of Nizhni Novgorod
Russian Federation


D. A. Antonov
Lobachevsky State University of Nizhni Novgorod
Russian Federation


A. V. Shorokhov
Penza State University
Russian Federation


A. P. Shkurinov
Institute for Problems of Laser and Information Technologies RAS
Russian Federation


I. A. Ozheredov
Institute for Problems of Laser and Information Technologies RAS
Russian Federation


P. V. Krevchik
Penza State University
Russian Federation


A. V. Razumov
Penza State University
Russian Federation


A. S. Kotov
Lobachevsky State University of Nizhni Novgorod
Russian Federation


I. S. Antonov
Penza State University
Russian Federation


I. M. Semenov
Penza State University
Russian Federation


References

1. Bendersky V.A., Leggett A.J., Ovchinnikov Yu.N., Krevchik V.D., Semenov M.B., Dahnovsky Yu.I, Gorshkov O.N., Filatov D.O., et al. Controlled dissipative tunneling. Tunnel transport in low-dimensional systems. Ed. A.J. Leggett. Fizmatlit, Moscow, 2011-2012, 496 pp.

2. Kusmartsev F.V, Krevchik V.D, Semenov M.B, Filatov D.O, Shorokhov A.V., Krevchik P.V., et al. Phonon assisted resonant tunnelling and its phonons control. JETP Letters, 2016, 104, P. 392-397.

3. Semenov M.B., Krevchik V.D., Filatov D.O., Shorokhov A.V., Shkurinov A.P., Ozheredov I.A., Krevchik P.V., Wang Y.H., Lie T.R., Malik A.K., Marychev M.O., Baidus N.V., and Semenov I.M. Dissipative tunneling of electrons in vertically coupled double asymmetric InAs/GaAs(001) quantum dots. Tech. Phys., 2022, 67, P. 115-125.

4. Caldeira A.O., Leggett A.J. Quantum tunnelling in a dissipative system. Ann. of Phys., 1983, 149 (2), P. 374-456.

5. Benderskii V.A., Vetoshkin E.V., Kats E.I., Trommsdorff H.P.Competing tunneling trajectories in a two-dimensional potential with variable topology as a model for quantum bifurcations, Phys. Rev. E, 2003, 67, 026102.

6. Larkin A.I., Ovchinnikov Yu.N. Decay of supercurrent in tunnel junctions. Phys. Rev. B, 1983, 28, P. 6281-6285.

7. Ivlev B.I., Ovchinnikov Yu.N. Decay of metastable states in a situation with close-lying tunneling trajectories. Sov. Phys. JETP, 1987, 66 (2), P. 378-383.

8. Dakhnovsky Yu.I., Ovchinnikov A.A., Semenov M.B. Low-temperature chemical reactions considered as dissipative tunnel systems. Sov. Phys. JETP, 1987, 65 (3), P. 541-547.

9. Aringazin A.K., Dahnovsky Yuri, Krevchik V.D., Semenov M.B., Ovchinnikov A.A., Yamamoto K. Two-dimensional tunnel correlations with dissipation. Phys. Rev. B, 2003, 68, 155426.

10. Ovchinnikov Yu.N. Conductivity of granular metallic film. JETP, 2007, 104, P. 254-257.

11. Dahnovsky Yu., Krevchik V.D., Krivnov V.Ya., Semenov M.B., Yamamoto K., Shorokhov A.V., et al. Transfer processes in low-dimensional systems. UT Research Institute Press, Tokyo: 2005, 690 pp.

12. Caldeira A.O., Leggett A.J. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett., 1981, 46 (4), P. 211-214.

13. Larkin A.I., Ovchinnikov Yu.N. Quantum tunneling with dissipation. JETP Letters, 1983, 37 (7), P. 382-385.

14. Dakhnovskii Yu.I., Horia M. Absolute negative resistance in double-barrier heterostructures in a strong laser field. Phys. Rev. B, 1995, 51, P. 4193-4199.

15. Zhukovsky V.Ch, Dakhnovskii Yu.I., Gorshkov O.N., Krevchik V.D, Semenov M.B., Smirnov Yu.G., Chuprunov E.V., Rudin V.A., Skibitskaya N.Yu., Krevchik P.V., Filatov D.O., Antonov D.A., Lapshina M.A., Yamamoto K., Shenina M.E. Observed two-dimensional tunnel bifurcations in an external electric field. Moscow University Physics Bulletin, 2009, 64, P. 475-480.

16. Zhukovsky V.Ch., Gorshkov O.N, Krevchik V.D, Semenov M.B, Groznaya E.V., Filatov D.O., Antonov D.A. Controllable dissipative tunneling in an external electric field. Moscow University Physics Bulletin, 2009, 64, P. 27-32.

17. Filatov D., Guseinov D., Antonov I., Kasatkin A., Gorshkov O. Imaging and spectroscopy of Au nanoclusters in yttria-stabilized zirconia films using ballistic electron/hole emission microscopy. RSC Adv., 2014, 4, P. 57337-57342.

18. Ledentsov N.N., Ustinov V.M., Shchukin V.A., Kop’ev P.S., Alferov Zh.I., Bimberg D. Quantum dot heterostructures: fabrication, properties, lasers (Review). Semiconductors, 1998, 32 (4), P. 343-455.

19. Stier O., Grundmann M., Bimberg D. Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory. Phys. Rev. B, 1999, 59, P. 5688-5703.

20. Karpovich I.A., Zvonkov B.N., Baidus’ N.V., Tikhov S.V., Filatov D.O. Tuning the energy spectrum of the InAs/GaAs quantum dot structures by varying the thickness and composition of a thin double GaAs/InGaAs cladding layer. Trends in Nanotechnology Research, Ed. by Dirote E.V. Nova Science Publishers, New York, 2004. P. 173-208.

21. Louis A.A., Sethna J.P. Atomic tunneling from a scanning-tunneling or atomiforce microscope tip: Dissipative quantum effects from phonons. Phys. Rev. Lett., 1995, 74 (8), P. 1363-1366.

22. Ovchinnikov A.A., Dakhnovsky Yu.I., Krevchik V.D., Semenov M.B., Aringazin A.K. Principles of controlled modulation of low-dimensional structures. UNTsDO, Moscow, 2003, 510 pp. (in Russian)

23. Krevchik V.D., Razumov A.V., Semenov M.B., Uvaysov S.U., Kulagin V.P., Komada P., Smailova S., Mussabekova A. Influence of an external electric field and dissipative tunneling on recombination radiation in quantum dots. Sensors, 2022, 22, 1300.

24. Antonov D.A., Novikov A.S., Filatov D.O., Kruglov A.V., Antonov I.N., Zdoroveishchev A.V., Gorshkov O.N. Formation of nanosized Ni ferromagnetic filaments in ZrO2(Y) films. Tech. Phys. Lett., 2021, 47, P. 539-541.

25. Antonov D.A., Filatov D.O., Novikov A.S., Kruglov A.V., Antonov I.N., Zdoroveyshchev A.V., Gorshkov O.N. An atomic force microscopics study of resistive switching resonance activation in ZrO2(Y) films. Tech. Phys., 2020, 65, P. 1744-1747.


Review

For citations:


Semenov M.B., Krevchik V.D., Filatov D.O., Antonov D.A., Shorokhov A.V., Shkurinov A.P., Ozheredov I.A., Krevchik P.V., Razumov A.V., Kotov A.S., Antonov I.S., Semenov I.M. Features of tunneling current-voltage characteristics in dielectric films with Ni, Fe and Co nanoparticles, investigated by conductive AFM and within the framework of the theory of 1D-dissipative tunneling. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):621-627. https://doi.org/10.17586/2220-8054-2022-13-6-621-627

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)