Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Master equation for correlators of normal-ordered field mode operators

https://doi.org/10.17586/2220-8054-2022-13-6-628-631

Abstract

We study the master equation for open quantum systems in the alternative form, preserving the normal form of the averaged normal-ordered operators. We give an example of using this equation for the correlators of normal-ordered field mode operators. We explore the properties of the system of linear equations for the higher-order field operators based on the example of a two-mode bosonic system.

About the Authors

A. D. Vatutin
ITMO University
Russian Federation


G. P. Miroshnichenko
ITMO University
Russian Federation


A. I. Trifanov
ITMO University
Russian Federation


References

1. Pirandola S., Eisert J., Weedbrook C., Furusawa A., Braunstein S.L. Advances in quantum teleportation. Nat. Photon., 2015, 9, P. 641-652.

2. Gyongyosi L., Imre S. A survey on quantum computing technology.Comput. Sci. Rev., 2019, 31, P. 51-71.

3. Pirandola S., Andersen U., Banchi L., Berta M., Bunandar D., Colbeck R., Englund D., Gehring T., Lupo C., Ottaviani C., Pereira J. Advances in quantum cryptography. Adv. Opt. Photon., 2020, 12, P. 1012-1236.

4. Lvovsky A.I., Sanders B.C., Tittel W. Optical quantum memory. Nat. Photon., 2009, 3, P. 706-714.

5. Gaidash A., Kozubov A., Miroshnichenko G. Dissipative dynamics of quantum states in the fiber channel. Phys. Rev. A, 2020, 102, 023711.

6. Bonetti J., Hernandez S.M., Grosz D.F. Master equation approach to propagation in nonlinear fibers. Opt. Lett., 2021, 46, P. 665-668.

7. Pearle P. Simple derivation of the Lindblad equation. Eur. J. Phys., 2012, 33, P. 805-822.

8. Albash T., Boixo S., Lidar D.A., Zanardi P. Quantum adiabatic Markovian master equations. New J. Phys., 2012, 14, 123016.

9. McCauley G., Cruikshank B., Bondar D.I., Jacobs K. Accurate Lindblad-form master equation for weakly damped quantum systems across all regimes. npj Quantum Inf., 2020, 6, 74.

10. Miroshnichenko G. Decoherence of a one-photon packet in an imperfect optical fiber. Bull.Russ. Acad. Sci., 2018, 82, P. 1550-1555.

11. Kozubov A., Gaidash A., Miroshnichenko G. Quantum model of decoherence in the polarization domain for the fiber channel. Phys. Rev. A, 2019, 99, 053842.

12. Miroshnichenko G.P. Hamiltonian of photons in a single-mode optical fiber for quantum communications protocols. Opt. Spectrosc., 2012, 112, P. 777-786.

13. Lu H.-X., Yang J., Zhang Y.-D., Chen Z.-B. Algebraic approach to master equations with superoperator generators of su(1,1) and su(2) Lie algebras. Phys. Rev. A, 2003, 67, 024101.

14. Tay B.A., Petrosky T. Biorthonormal eigenbasis of a Markovian master equation for the quantum Brownian motion. J. Math. Phys., 2008, 49, 113301.

15. Honda D., Nakazato H., Yoshida M. Spectral resolution of the Liouvillian of the Lindblad master equation for a harmonic oscillator. J. Math. Phys., 2010, 51, 072107.

16. Tay B.A. Eigenvalues of the Liouvillians of quantum master equation for a harmonic oscillator. Physica A, 2020, 556, 124768.

17. Shishkov V.Y., Andrianov E.S., Pukhov A.A., Vinogradov A.P., Lisyansky A.A. Perturbation theory for Lindblad superoperators for interacting open quantum systems. Phys. Rev. A, 2020, 102, 032207.

18. Teuber L., Scheel S. Solving the quantum master equation of coupled harmonic oscillators with Lie-algebra methods. Phys. Rev. A, 2020, 101, 042124.

19. Gaidash A., Kozubov A., Miroshnichenko G., Kiselev A.D. Quantum dynamics of mixed polarization states: effects of environment-mediated intermode coupling. JOSA B, 2021, 38 (9), 425226.

20. Klyshko D.M. Polarization of light: fourth-order effects and polarization-squeezed states. Zh. Eksp. Teor. Fiz., 1997, 111, P. 1955-1983.

21. Miroshnichenko G.P. Parameterization of an interaction operator of optical modes in a single-mode optical fiber. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6 (6), P. 857-865.


Review

For citations:


Vatutin A.D., Miroshnichenko G.P., Trifanov A.I. Master equation for correlators of normal-ordered field mode operators. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):628-631. https://doi.org/10.17586/2220-8054-2022-13-6-628-631

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)