Photocatalytic activity of titanium dioxide produced by high-energy milling
https://doi.org/10.17586/2220-8054-2022-13-6-632-639
Abstract
In this work, photocatalysts based on titanium dioxide were synthesized by high-energy ball milling of commercial titanium dioxide in the anatase modification. Using a complex of physicochemical methods, including XRD, low-temperature nitrogen adsorption, XPS and TEM, it was shown that the milling of commercial anatase leads to phase transformations and the formation of several phases of titanium dioxide, namely the high-pressure phase, the monoclinic phase of anatase and rutile, except for in addition, there is a change in the crystalline size and the value of the specific surface area grows from 8 to 31 m2/g. It was found that defects are introduced into the system during ball milling. The photocatalysts obtained by milling showed an activity comparable to the commercial standard TiO2 Degussa P25 in the destruction of the methylene blue dye under the action of UV light, while the adsorption properties of the synthesized samples exceeded those of commercial P25.
About the Authors
E. A. KozlovaRussian Federation
A. A. Valeeva
Russian Federation
A. A. Sushnikova
Russian Federation
A. V. Zhurenok
Russian Federation
A. A. Rempel
Russian Federation
References
1. Bensalah N., Alfaro M.A.Q., Mart´ınez-Huitle C.A. Electrochemical treatment of synthetic wastewaters containing Alphazurine A dye. Chemical Engineering J., 2009, 149 (1-3), P. 348-352.
2. Turhan K., Turgut Z. Decolorization of direct dye in textile wastewater by ozonization in a semi-batch bubble column reactor. Desalination, 2009, 242 (1-3), P. 256-263.
3. Gosetti F., Gianotti V., Angioi S., Polati S., Marengo E., Gennaro M.C. Oxidative degradation of food dye E133 Brilliant Blue FCF: Liquid chromatography-electrospray mass spectrometry identification of the degradation pathway. J. of Chromatogr. A, 2004, 1054 (1-2), P. 379-387.
4. Rauf M.A., Ashraf S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering J., 2009, 151 (1-3), P. 10-18.
5. Adhikari S., Sarkar D. Metal oxide semiconductors for dye degradation. Materials Research Bulletin, 2015, 72, P. 220-228.
6. Mohibbul M., Bahnemann D., Muneer M. Photocatalytic Degradation of Organic Pollutants: Mechanisms and Kinetics. In: Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update, Ed. T. Puzyn, A. Mostrag-Szlichtyng, 2012.
7. Malato S., Blanco J., Ferna´ndez-Alba A.R., Agu¨era A. Solar photocatalytic mineralization of commercial pesticides: Acrinathrin. Chemosphere, 2000, 40 (4), P. 403-409.
8. Percherancier J.P., Chapelon R., Pouyet B. Semiconductor-sensitized photodegradation of pesticides in water: the case of carbetamide. J. of Photochemistry and Photobiology, A: Chemistry, 1995, 87 (3), P. 261-266.
9. Doong R.A., Chang W.H. Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide. J. of Photochemistry and Photobiology A: Chemistry, 1997, 107 (1-3), P. 239-244.
10. Kerzhentsev M., Guillard C., Herrmann J.M., Pichat P. Photocatalytic pollutant removal in water at room temperature: Case study of the total degradation of the insecticide fenitrothion (phosphorothioic acid O,O-dimethyl-O-(3-methyl-4-nitro-phenyl) ester). Catalysis Today, 1996, 27 (1-2), P. 215-220.
11. Akpan U.G., Hameed B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. of Hazardous Materials, 2009, 170 (2-3), P. 520-529.
12. Bachina A.K., Popkov V.I., Seroglazova A.S., Enikeeva M.O., Kurenkova A.Yu., Kozlova E.A., Gerasimov E.Yu., Valeeva A.A., Rempel A.A. Synthesis, Characterization and Photocatalytic Activity of Spherulite-like r-TiO2 in Hydrogen Evolution Reaction and Methyl Violet Photodegradation. Catalysts, 2022, 12 (12), 1546.
13. Rempel A.A., Valeeva A.A. Nanostructural titanium dioxide for medical chemistry.Russ. Chem. Bull., 2019, 68, P. 2163-2171.
14. Postnova I., Kozlova E., Cherepanova S., Tsybulya S., Rempel A., Shchipunov Y. Titania synthesized through regulated mineralization of cellulose and its photocatalytic activity. RSC Advances, 2015, 5 (12), P. 8544-8551.
15. Bickley R.I., Gonzalez-Carreno T., Lees J.S., Palmisano L., Tilley R.J.D. A structural investigation of titanium dioxide photocatalysts. J. of Solid State Chemistry, 1991, 92 (1), P. 178-190.
16. Rempel A.A., Valeeva A.A., Vokhmintsev A.S., Weinstein I.A. Titanium dioxide nanotubes: synthesis, structure, properties and applications.Russ. Chem. Rev., 2021, 90 (11), P. 1397-1414.
17. Hurum D.C., Agrios A.G., Gray K.A., Rajh T., Thurnauer M.C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. of Physical Chemistry B, 2003, 107 (19), P. 4545-4549.
18. Saraev A.A., Kurenkova A.Y., Gerasimov E.Y., Kozlova E.A. Broadening the Action Spectrum of TiO2-Based Photocatalysts to Visible Region by Substituting Platinum with Copper. Nanomaterials, 2022, 12 (9), 1584.
19. Kurenkova A.Y., Kremneva A.M., Saraev A.A., Murzin V., Kozlova E.A., Kaichev V.V. Influence of Thermal Activation of Titania on Photoreactivity of Pt/TiO2 in Hydrogen Production. Catalysis Letters, 2021, 151 (3), P. 748-754.
20. Ordinartsev D.P., Pechishcheva N.V., Valeeva A.A., Zaitseva P.V., Korobitsyna A.D., Belozerova A.A., Sushnikova A.A., Petrova S.A., Shunyaev K.Yu., Rempel’ A.A. Nanosized Titania for Removing Cr(VI) and As(III) from Aqueous Solutions.Russian J. of Physical Chemistry A, 2022, 96 (11), P. 2408-2416.
21. Reddy K.M., Manorama S.V., Reddy A.R. Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 2003, 78 (1), P. 239-245.
22. Luan Z., Maes E.M., Van Der Heide P.A.W., Zhao D., Czernuszewicz R.S., Kevan L. Incorporation of titanium, into mesoporous silica molecular sieve SBA-15. Chemistry of Materials, 1999, 11 (12), P. 3680-3686.
23. Hasegawa Y., Ayame A. Investigation of oxidation states of titanium in titanium silicalite-1 by X-ray photoelectron spectroscopy. Catalysis Today, 2001, 71 (1-2), P. 177-187.
24. Agnoli S., Barolo A., Finetti P., Sedona F., Sambi M., Granozzi G. Core and valence band photoemission study of highly strained ultrathin NiO films on Pd(100). J. of Physical Chemistry C, 2007, 111 (9), P. 3736-3743.
25. Kaichev V.V., Popova G.Ya., Chesalov Yu.A., Saraev A.A., Zemlyanov D.Y., Beloshapkin S.A., Knop-Gericke A., Schlo¨gl R., Andrushkevich T.V., Bukhtiyarov V.I. Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2 catalyst. J. of Catalysis, 2014, 311, P. 59-70.
26. Kaichev V.V., Chesalov Yu.A., Saraev A.A., Klyushin A.Yu., Knop-Gericke A., Andrushkevich T.V., Bukhtiyarov V.I. Redox mechanism for selective oxidation of ethanol over monolayer V2O5/TiO2 catalysts. J. of Catalysis, 2016, 338, P. 82-93.
27. Rauf, M.A., Meetani, M.A., Khaleel A., Ahmed, A. Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chemical Engineering J., 2010, 157, P. 373-378.
28. Markovskaya, D.V., Zhurenok, A.V., Kurenkova, A.Y., Kremneva, A.M., Saraev, A.A., Zharkov, S.M., Kozlova, E.A., Kaichev, V.V. New Titania-Based Photocatalysts for Hydrogen Production from Aqueous-Alcoholic Solutions of Methylene Blue. RSC Advances, 2020, 10, P. 34137-34148.
29. Reddy N.R., Reddy P.M., Jyothi N., Kumar A.S., Jung J.H., Joo S.W. Versatile TiO2 bandgap modification with metal, non-metal, noble metal, carbon material, and semiconductor for the photoelectrochemical water splitting and photocatalytic dye degradation performance. J. of Alloys and Compounds, 2023, 935, 167713.
30. Jo W.K., Tayade R.J. Recent developments in photocatalytic dye degradation upon irradiation with energy-efficient light emitting diodes. Chinese J. of Catalysis, 2014, 35 (11), P. 1781-1792.
31. Ajmal A., Majeed I., Malik R.N., Idriss H., Nadeem M.A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Advances, 2014, 4 (70), P. 37003-37026.
Review
For citations:
Kozlova E.A., Valeeva A.A., Sushnikova A.A., Zhurenok A.V., Rempel A.A. Photocatalytic activity of titanium dioxide produced by high-energy milling. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):632-639. https://doi.org/10.17586/2220-8054-2022-13-6-632-639