Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Synthesis of highly active and visible-light-driven PrFeO3 photocatalyst using solution combustion approach and succinic acid as fuel

https://doi.org/10.17586/2220-8054-2022-13-6-649-654

Abstract

In this work, nanocrystalline powder of praseodymium orthoferrite was obtained by the solution combustion synthesis using succinic acid as organic fuel. The obtained sample is characterized by techniques of powder x-ray diffraction, scanning and transmission electron microscopy, and UV-Vis diffuse reflectance spectroscopy. The sample was discovered to have a porous, foamy morphology with an average crystallite size of 36.1 nm and a band gap value of 2.1 eV. The study of Fenton-like photocatalytic activity was carried out on the example of the decomposition of the methyl violet dye in the presence of hydrogen peroxide under visible light. The maximum value of the degradation rate constant is 0.0325 min-1. The results were compared to the available data obtained for similar systems.

About the Authors

A. S. Seroglazova
Saint Petersburg State Institute of Technology; Ioffe Institute
Russian Federation


V. I. Popkov
Ioffe Institute
Russian Federation


References

1. Lone I.H., Aslam J., Radwan N.R.E., Bashal A.H., Ajlouni A.F.A., Akhter A. Multiferroic ABO3 Transition Metal Oxides: a Rare Interaction of Ferroelectricity and Magnetism. Nanoscale Research Letters, 2019, 14, P. 1-12.

2. Popkov V.I., Tugova E.A., Bachina A.K., Almyasheva O.V. The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides.Russian Journal of General Chemistry, 2017, 87, P. 2516-2524.

3. Akbashev A.R., Semisalova A.S., Perov N.S., Kaul A.R. Weak ferromagnetism in hexagonal orthoferrites RFeO3 (R = Lu, Er-Tb). Applied Physics Letters, 2011, 99, P. 2011-2014.

4. Xu H, Hu X, Zhang L. Generalized low-temperature synthesis of nanocrystalline rare-earth orthoferrites LnFeO3 (Ln = La, Pr, Nd, Sm, Eu, Gd). Crystal Growth and Design, 2008, 8, P. 2061.

5. Li M., Tan H., Duan W. Hexagonal rare-earth manganites and ferrites: A review of improper ferroelectricity, magnetoelectric coupling, and unusual domain walls. Physical Chemistry Chemical Physics. Royal Society of Chemistry, 2020, 22, P. 14415-14432.

6. Mir F.A., Sharma S.K., Kumar R. Magnetizations and magneto-transport properties of Ni-doped PrFeO3 thin films. Chinese Physics B, 2014, 23.

7. Kondrashkova I.S., Martinson K.D., Zakharova N.V., Popkov V.I. Synthesis of Nanocrystalline HoFeO3 Photocatalyst via Heat Treatment of Products of Glycine-Nitrate Combustion. R ussian Journal of General Chemistry, 2018, 88, P. 2465-2471.

8. Maity R., Sheikh M.S., Dutta A., Sinha T.P. Visible Light Driven Photocatalytic Activity of Granular Pr Doped LaFeO3. Journal of Electronic Materials, 2019, 48, P. 4856-4865.

9. Qin C., Li Z., Chen G., Zhao Y., Lin T. Fabrication and visible-light photocatalytic behavior of perovskite praseodymium ferrite porous nanotubes. Journal of Power Sources, 2015, 285, P. 178-184.

10. Arakawa T., Tsuchi-Ya S.I., Shiokawa J. Catalytic properties and activity of rare-earth orthoferrites in oxidation of methanol. Journal of Catalysis, 1982, 74, P. 317-322.

11. Megarajan S.K., Rayalu S., Nishibori M., Labhsetwar N. Improved catalytic activity of PrMO3 (M = Co and Fe) perovskites: Synthesis of thermally stable nanoparticles by a novel hydrothermal method. New Journal of Chemistry, 2015, 39, P. 2342-2348.

12. Wang X., Cao S., Wang Y., Yuan S., Kang B., Wu A., et al. Crystal growth and characterization of the rare earth orthoferrite PrFeO3. Journal of Crystal Growth, 2013, 362, P. 216-219.

13. Seroglazova A.S., Lebedev L.A., Chebanenko M.I., Sklyarova A.S., Buryanenko I.V., Semenov V.G., et al. Ox/Red-controllable combustion synthesis of foam-like PrFeO3 nanopowders for effective photo-Fenton degradation of methyl violet. Advanced Powder Technology, 2022, 33, P. 103398.

14. Nguyen A.T., Nguyen V.Y., Mittova I.Y., Mittova V.O., Viryutina E.L., Hoang C.C.T., et al. Synthesis and magnetic properties of PrFeO3 nanopowders by the co-precipitation method using ethanol. Nanosystems: Physics, Chemistry, Mathematics, 2020, 11, P. 468-473.

15. Abdellahi M., Abhari A.S., Bahmanpour M. Preparation and characterization of orthoferrite PrFeO3 nanoceramic. Ceramics International, 2016, 42, P. 4637-4641.

16. Freeman E., Kumar S., Thomas S.R., Pickering H., Fermin D.J., Eslava S. PrFeO3 Photocathodes Prepared Through Spray Pyrolysis. ChemElectroChem, 2020,7, P. 1365-1372.

17. Tang P., Xie X., Chen H., Lv C., Ding Y. Synthesis of Nanoparticulate PrFeO3 by Sol-Gel Method and its Visible-Light Photocatalytic Activity. Ferroelectrics, 2019, 546, P. 181-187.

18. Wen W., Wu J.M. Nanomaterials via solution combustion synthesis: A step nearer to controllability. RSC Advances, 2014, 4, P. 58090-58100.

19. Zhu C., Akiyama T. Optimized conditions for glycine-nitrate-based solution combustion synthesis of LiNi0.5Mn1.5O4 as a high-voltage cathode material for lithium-ion batteries. Electrochimica Acta, 2014, 127, P. 290-298.

20. Mukasyan A.S., Epstein P., Dinka P. Solution combustion synthesis of nanomaterials. Proceedings of the Combustion Institute, 2007, 31, P. 1789-1795.

21. Tugova E., Yastrebov S., Karpov O., Smith R. NdFeO3 nanocrystals under glycine nitrate combustion formation. Journal of Crystal Growth, 2017, 467, P. 88-92.

22. Bachina A., Ivanov V.A., Popkov V.I. Peculiarities of LaFeO3 nanocrystals formation via glycine-nitrate combustion. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8, P. 647-653.

23. Komova O.V., Simagina V.I, Mukha S.A., Netskina O.V., Odegova G.V., Bulavchenko O.A., et al. A modified glycine-nitrate combustion method for one-step synthesis of LaFeO3. Advanced Powder Technology, 2016, 27, P. 496-503.

24. Popkov V.I., Almjasheva O.V., Nevedomskiy V.N., Sokolov V.V., Gusarov V.V. Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycine-nitrate combustion. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6, P. 866-874.

25. Tijare S.N., Bakardjieva S., Subrt J., Joshi M.V., Rayalu S.S., Hishita S., et al. Synthesis and visible light photocatalytic activity of nanocrystalline PrFeO3 perovskite for hydrogen generation in ethanol-water system. Journal of Chemical Sciences, 2014, 126, P. 517-525.

26. Mukasyan A.S., Dinka P. Novel approaches to solution-combustion synthesis of nanomaterials.International Journal of Self-Propagating High-Temperature Synthesis, 2007, 16, P. 23-35.

27. Popkov V.I., Martinson K.D., Kondrashkova I.S., Enikeeva M.O,. Nevedomskiy V.N., Panchuk V.V., et al. SCS-assisted production of EuFeO3 core-shell nanoparticles: formation process, structural features and magnetic behavior. Journal of Alloys and Compounds, 2021, 859, P. 157812.

28. Petschnig L.L., Fuhrmann G., Schildhammer D., Tribus M., Schottenberger H., Huppertz H. Solution combustion synthesis of CeFeO3 under ambient atmosphere. Ceramics International, 2016, 42, P. 4262-4267.

29. Wolf E.E., Manukyan K.V., Cross A., Roslyakov S., Rouvimov S., Rogachev A.S., et al. Solution Combustion Synthesis of Nano-Crystalline Metallic Materials: Mechanistic Studies. The Journal of Physical Chemistry C, 2013, 117, P. 24217-24227.

30. Sarikhani F., Zabardasti A., Reza A., Mahmoud S. Enhanced visible light activity of - EuFeO3/TiO2 nanocomposites prepared by thermal treatment - hydrolysis precipitation method. Applied Physics, 20202, 126, P. 476.

31. Ju L., Chen Z., Fang L., Dong W., Zheng F., Shen M. Sol-gel synthesis and photo-Fenton-like catalytic activity of EuFeO3 nanoparticles. Journal of the American Ceramic Society, 2011, 94, P. 3418-3424.

32. Tikhanova S.M., Lebedev L.A., Kirillova S.A., Tomkovich M.V., Popkov V.I. Synthesis, structure, and visible-light-driven activity of o-YbFeO3/h-YbFeO3/CeO2 photocatalysts. Chimica Techno Acta, 2021, 8, P. 20218407.

33. Tikhanova S.M., Lebedev L.A., Martinson K.D., Chebanenko M.I., Burianenko I.V., Semenov V.G., Nevedomskiy V.N., Popkov V.I. Synthesis of novel heterojunction h-YbFeO3/o-YbFeO3 photocatalyst with enhanced Fenton-like activity under visible-light. New Jornal Chemistry, 2020, 45, P. 1541-1550.

34. Martinson K.D., Belyak V.E., Sakhno D.D., Kiryanov N.V., Chebanenko M.I., Popkov V.I. Effect of fuel type on solution combustion synthesis and photocatalytic activity of NiFe2O4 nanopowders. Nanosystems: Physics, Chemistry, Mathematics, 2021, 12, P. 792-798.


Review

For citations:


Seroglazova A.S., Popkov V.I. Synthesis of highly active and visible-light-driven PrFeO3 photocatalyst using solution combustion approach and succinic acid as fuel. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):649-654. https://doi.org/10.17586/2220-8054-2022-13-6-649-654

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)