Non-compact perturbation of the spectrum of multipliers given by a special form
https://doi.org/10.17586/2220-8054-2024-15-1-31-36
Abstract
In this paper, the change of the spectrum of multiplier H0f (x, y) = k0(x, y)f (x, y) for perturbation with non-compact partially integral operators is studied. In addition, the existence of resonance is investigated in the model H = H0 — (γ1T1 + γ2T2).
About the Authors
R. R. KucharovUzbekistan
Ramziddin R. Kucharov
Tashkent, 4, 100174
T. M. Tuxtamurodova
Uzbekistan
Tillohon M. Tuxtamurodova
Mathematics, Tashkent, 4, 100174
References
1. Vekua I.N., New Methods for Solving Elliptic Equations. OGIZ, Moscow Leningrad, 1948 [inRussian].
2. Aleksandrov V.M. and Kovalenko E.V. A class of integral equations of mixed problems of continuum mechanics. Sov. Phys., Dokl., 1980, 25, P. 354.
3. Aleksandrov V.M. and Kovalenko E.V. Contact interaction between coated bodies with wear. Sov. Phys., Dokl., 1984, 29, P. 340.
4. Manzhirov A.V. On a method of solving two-dimensional integral equations of axisymmetric contact problems for bodies with complex rheology, J. Appl. Math. Mech., 1985, 49, P. 777.
5. Kalitvin A.S. Linear Operators with Partial Integrals Izd. Voronezh. Gos. Univ., Voronezh, 2000 [in Russian].
6. Uchiyama J. Finiteness of the number of discrete eigenvalues of the Schro¨dinger operator for a three particle system. Publ. Res. Inst.,Math. Sci., 1969,5(1), P. 51–63.
7. Uchiyama J. Corrections to finiteness of the number of discrete eigenvalues of the Schro¨dinger operator for a three particle system. Publ. Res. Inst. Math. Sci., 1970, 6(1), P. 189–192.
8. Zhislin G.M. On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions. Theor. Math. Phys., 1971, 7, P. 571–578.
9. Reed M., Simon B. Methods of Modern Mathematical Physics. Analysis of Operators, Acad. Press, New York, 1982, 4.
10. Friedrichs K.O. ”Uber die Spectralzerlegung eines Integral Operators. Math. Ann., 1938, 115, P. 249–272.
11. Ladyzhenskaya O.A. and Faddeev L.D. To the theory of perturbations of the continuous spectrum. Dokl. Akad. Nauk SSSR, 1958, 6(120), P. 1187– 1190.
12. Eshkabilov Yu.Kh. On infinity of the discrete spectrum of operators in the Friedrichs model. Siberian Adv. Math., 2012, 22, P. –12.
13. Eshkabilov Yu.Kh. On a discrete three-particle Schro¨dinger operator in the Hubbard model. Theor. Math. Phys., 2006, 149(2), P. 1497–1511.
14. Eshkabilov Yu.Kh. On the discrete spectrum of partially integral operators. Siberian Adv. Math., 2013, 23, P. 227–233.
15. Ichinose T. Spectral properties of tensor products of linear operators:I. Trans.Amer.Math.Soc., 1978, 235, P. 75–113.
16. Ichinose T. Spectral properties of tensor products of linear operators:II. Trans.Amer.Math.Soc., 1978, 237, P. 223–254.
17. Eshkabilov Yu.Kh., Kucharov R.R. On the finiteness of negative eigenvalues of a partially integral operator. Siberian Adv. Math.. 2015, 25(3), P. 179–190.
18. Eshkabilov Yu.Kh., Kucharov R.R. Essential and discrete spectra of the three-particle Schrodinger operator on a lattice. Theor.Math.Phys., 2012, 170(3), P. 341–353.
19. Albeverio S., Lakaev S.N., Muminov Z.I. On the number of eigenvalues of a model operator associated to a system of three-particles on lattices. Russ. J. of Math. Phys., 2007, 14(4), P. 377–387.
20. Kucharov R.R., Tuxtamurodova T.M., Arzikulov G.P. Essential spectrum of one partial integral operator with degenerate kernel. Vestnik NUUz, 2023, 1, P. 85–96.
Review
For citations:
Kucharov R.R., Tuxtamurodova T.M. Non-compact perturbation of the spectrum of multipliers given by a special form. Nanosystems: Physics, Chemistry, Mathematics. 2024;15(1):31-36. https://doi.org/10.17586/2220-8054-2024-15-1-31-36