Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Formation of nanocrystalline particles on the basis of La2(Ni,Mn,Fe)2O6 variable composition phases having a structure of double perovskite under conditions of solution combustion

https://doi.org/10.17586/2220-8054-2022-13-6-655-661

Abstract

Nanocrystalline particles on the basis of La2(Ni,Mn,Fe)2O6 variable composition phases of a double perovskite structure have been produced by glycine-nitrate combustion. The size of crystallites grows from 5 to 45 nm with an increase in iron content of synthesized particles. It is demonstrated that iron unevenly builds into octahedral sites of nickel and manganese ions substituting mainly manganese ions. At the same time, the dependence of double perovskite unit cell volume on the iron ions concentration is well described by Retgers’ law.

About the Authors

D. D. Averkiev
Ioffe Institute; St. Petersburg State Electrotechnical University “LETI”
Russian Federation


L. L. Larina
Emanuel Institute of Biochemical Physics
Russian Federation


O. I. Shevaleevskiy
Emanuel Institute of Biochemical Physics
Russian Federation


O. V. Almjasheva
Ioffe Institute; St. Petersburg State Electrotechnical University “LETI”
Russian Federation


References

1. Blasse G. Ferromagnetic interactions in non-metallic perovskites. J. Phys. Chem. Solids, 1965, 26, P. 1969-1971.

2. Goodenough J.B., Wold A., Arnott R.J., Menyuk N. Relationship between crystal symmetry and magnetic properties of ionic compounds contain- ing Mn3+. Phys. Rev., 1961, 124, P. 373-384.

3. Kojima A., Teshima K., Shirai Y., Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17), P. 6050-651.

4. Grinberg I., West D.V., Torres M., Gou G., Stein D.M., Wu L., Chen C., Gallo E.M., Akbashev A.R., Davies P.K., Spanier J.E., Rappe A.M. Perovskite oxides for visiblelight-absorbing ferroelectric and photovoltaic materials. Nature, 2013, 503, P. 509-512.

5. Wang F., Grinberg I., Rappe A.M. Semiconducting ferroelectric photovoltaics through Zn2+ doping into KNbO3 and polarization rotation. Phys. Rev., 2014, 89(23), P. 235105.

6. Nechache R., Harnagea C., Li S., Cardenas L., Huang W., Chakrabartty J., Rosei F. Bandgap tuning of multiservice oxide solar cells. Nat. Photonics, 2015, 9, P. 61-67.

7. Liu Y.P., Chen S.H., Tung J.C., Wang Y.K. Investigation of possible half-metal material on double perovskites Sr2BBO6 (B, B=3d transition metal) using firstprinciple calculations. Solid State Commun., 2012, 152(11), P. 968-973.

8. Berger R.F., Neaton J.B.Computational design of low-band-gap double perovskites. Physical Review B, 2012, 86(16), P. 165211.

9. Troullier N., Martins J.L. Efficient Pseudopotentials for plane wave calculations. Physical Review B, 1991, 43(3), P. 1993-2006.

10. Giannozzi P., Baroni S., Bonini N. Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter., 2009, 21, P. 395502.

11. Kobayashi K.I., Kimura T., Sawada H., Terakura K., Tokura Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature, 1998, 395, P. 677-680.

12. Najar F.A., Abass S., Sultan K., Kharadi M. A., Malik G.F.A., Samad R.Comparative study of optical properties of substitutionally doped La2NiMnO6 double perovskite ceramic: A potential candidate for solar cells and dielectrics. Physica B: Condensed Matter, 2021, 621, P. 413311.

13. Tirmali P.M., Mane S.M., Kadam S.L., Kulkarni S.B. Effect of substitutions on dielectric behavior of La2NiMnO6. Chinese Journal of Physics, 2018, 56(2), P. 525-537.

14. Gan H., Wang C., Shen Q. Improved magnetic performance of Co-doped La2NiMnO6 ceramics prepared at low temperature. Journal of the European Ceramic Society, 2020, 40(5), P. 1909-1916.

15. Gusarov V.V., Matrosov V.N., Semin E.G., Suvorov S.A. Theoretical analysis of thermodynamic parameters of mixing during intracrystalline exchange in chrysoberyl. Catalytic processes and catalysts. LTI im. Lensovet, Leningrad, 1983, P. 76-81. In Russian

16. Rogado N.S., Li J., Sleight A.W., Subramanian M.A. Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Adv. Mater., 2005, 17(18), P. 2225-2227.

17. Spurgeon S.R., Du Y., Droubay T., Devaraj A., Sang X., Longo P., Yan P., Kotula P.G., Shutthanandan V., Bowden M.E., LeBeau J.M., Wang C., Sushko P.V., Chambers S.A.Competing pathways for nucleation of the double perovskite structure in the epitaxial synthesis of La2MnNiO6. Chem. Mater., 2016, 28(11), P. 3814-3822.

18. Choudhury D., Mandal P., Mathieu R., Hazarika A., Rajan S., Sundaresan A., Waghmare U.V., Knut R., Karis O., Nordblad P., Sarma D.D. Near-room-temperature colossal magnetodielectricity and multiglass properties in partially disordered La2NiMnO6. Phys. Rev. Lett., 2012, 108(12), P. 127201.

19. Iliev M.N., Guo H., Gupta A. Raman spectroscopy evidence of strong spin-phonon coupling in epitaxial thin films of the double perovskite La2NiMnO6. Appl. Phys. Lett., 2007, 90, P. 151914.

20. Bull C.L., Gleeson D., Knight K.S. Determination of B-site ordering and structural transformations in the mixed transition metal perovskites La2CoMnO6 and La2NiMnO6. J. Phys. Condens. Matter., 2003, 15(29), P. 4927-4936.

21. Joly V.L.J., Joy P.A., Date S.K., Gopinath C.S. Two ferromagnetic phases with different spin states of Mn and Ni in LaMn0.5Ni0.5O3. Phys. Rev. B., 2002, 65(18), P. 184416.

22. Dass R.I., Yan J.Q., Goodenough J.B. Oxygen stoichiometry, ferromagnetism, and transport properties of La2-xNiMnO6+δ. Phys. Rev. B., 2003, 68(6), P. 64415.

23. Chandrasekhar K.D., Das A.K., Mitra C., Venimadhav A. The extrinsic origin of the magnetodielectric effect in the double perovskite La2NiMnO6. J. Phys. Condens. Matter., 2012, 24(49), P. 495901. - x

24. Blanco J., Garc´ıa J., Sanchez M.C., Campo J., Sub´ıas G., P’erez-Cacho J. Magnetic properties of LaNi1 xMn O3+δ B., 2002, 30, P. 469-479. perovskites. Eur. Phys. J.

25. Kozlov S.S., Alexeeva O.V., Nikolskaia A.B., Shevaleevskiy O.I., Averkiev D.D., Kozhuhovskaya P.V., Almjasheva O.V., Larina L.L. Double perovskite oxides La2NiMnO6 and La2Ni0.8Fe0.2MnO6 for inorganic perovskite solar cells. Nanosystems: Phys. Chem. Math., 2022, 13(3), P. 314-319.

26. Nikolskaia A.B., Kozlov S.S., Karyagina O.K. Alexeeva O.V., Almjasheva O.V., Averkiev D.D., Kozhuhovskaya P.V., Shevaleevskiy O.I. Cation Doping of La2NiMnO6 complex oxide with the double perovskite structure for photovoltaic applications.Russ. J. Inorg. Chem., 2022, 67(6), P. 921-925.

27. Nikolskaia A.B., Vildanova M.F., Kozlov S.S., Almjasheva O.V., Gusarov V.V., Shevaleevskiy O.I. High performance tandem perovskite-silicon solar cells with very large bandgap photoelectrodes. Nanosystems: Phys. Chem. Math., 2021, 12(2), P. 246-251.

28. Lan C., Zhao S., Xu T., Ma J., Hayase S., Ma T. Investigation on structures, band gaps, and electronic structures of lead free La22NiMnO6 double perovskite materials for potential application of solar cell. J. Alloys Compd., 2016, 655, P. 208-214.

29. Dixit H., Punetha D., Pandey S.K. Improvement in performance of leadfree inverted perovskite solar cell by optimization of solar parameters. Optik, 2019, 179, P. 969-976.

30. Kumar M., Prajapati B., Raj A., Anshul A., Sati P.C., Sahni M., Kumar A. Progresses and challenges in the structural and magnetic properties of double perovskite La2NiMnO6 with their applications in solar energy. Materials Today: Proceedings, 2022, 49(8), P. 3088-3092.

31. de Azevedo Filho J.B., Souza R.F., Queiroz J.C.A., Costa T.H.C., Sena C.P.S., Fonseca S.G.C., da Silva A.O., Oliveira J.B.L. Theoretical and experimental investigation of the structural and magnetic properties of La2NiMnO6. Journal of Magnetism and Magnetic Materials, 2021, 527, P. 167770.

32. Nasir M., Kumar S., Patra N., Bhattacharya D., Jha S.N., Basaula D.R., Bhatt S., Khan M., Liu S.-W., Biring S., Sen S. Role of antisite disorder, rare-earth size, and superexchange angle on band gap, Curie temperature, and magnetization of R2NiMnO6 double perovskites. ACS Appl. Electron. Mater., 2019, 1(1), P. 141-153.

33. Kumar M, Prajapati B., Singh A., Kumar S., Kumar A., Mittal S., Aditya. Structural, optical and magneto-electric coupling analysis in ‘Y’ doped double perovskite La2NiMnO6 nanoparticles. Chemical Physics, 2020, 532, P. 110688.

34. Gaikwad V.M., Yadav K.K., Lofland S.E., Ramanujachary K.V., Chakraverty S., Ganguli A.K., Jha M. New low temperature process for stabilization of nanostructured La2NiMnO6 and their magnetic properties. Journal of Magnetism and Magnetic Materials, 2019, 471, P. 8-13.

35. Singh M.P., Truong K.D., Jandl S., Fournier P. Long-range Ni/Mn structural order in epitaxial double perovskite La2NiMnO6 thin films. Phys. Rev. B., 2009, 79, P. 224421.

36. Reznitsky L.A. Solid state calorimetry (structural, magnetic, electronic transformations). Moscow State University, Moscow, 1981, 184 p. In Russian

37. Reznitsky L.A. Chemical bonding and transformations of oxides. Moscow State University, Moscow, 1991, 168 p. In Russian

38. Gusarov V.V., Semin E.G. State diagram of the subsolidus region of the quasi-binary system BeAl2O4-[BeFe2O4].Rus. J. Inorg. Chem., 1992, 37(9), P. 2092-2096. In Russian

39. Reznitsky L.A. Crystal energetics of oxides. Dialog - Moscow State University, Moscow, 1998, 146 p. In Russian

40. Krasilin A.A., Gusarov V.V. Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure. Nanosystems: Phys., Chem., Math., 2017. 8(5), P. 620-627.

41. Saxena S.K. Thermodynamics of rock-forming crystalline solutions. Springer, Berlin, Heidelberg, 1973, 188 p.

42. Sayed F.N., Achary S.N., Jayakumar O.D. Role of annealing conditions on the ferromagnetic and dielectric properties of La2NiMnO6. J. Mater. Res., 2011, 26, P. 567-577.

43. Balcells L., Navarro J., Bibes M., Roig A., Martınez B., Fontcuberta J. Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite. Appl. Phys. Lett., 2001, 78, P. 781-783.

44. Pal S., Sharada G., Goyal M., Mukherjee S., Pal B., Saha R., Sundaresan A., Jana S., Karis O., Freeland J.W., Sarma D.D. Effect of anti-site disorder on magnetism in La2NiMnO6, Phys. Rev. B, 2018, 97, P. 165137.

45. Wang X., Sui Y., Li Y., Li L., Zhang X., Wang Y., Liu Z., Su W., Tang J. The influence of the antiferromagnetic boundary on the magnetic property of La2NiMnO6. Appl. Phys. Lett., 2009, 95, P. 252502.

46. Nasir M., Khan M., Kumar S., Bhatt S., Patra N., Bhattacharya D., Jha S.N., Biring S., Sen S. The effect of high temperature annealing on the antisite defects in ferromagnetic La2NiMnO6 double perovskite. Journal of Magnetism and Magnetic Materials, 2019, 483, P. 114-123.

47. Gusarov V.V., Ishutina Z.N., Malkov A.A., Malygin A.A. Peculiarities of the solid-phase chemical reaction in formation of mullite in the nanosize film composition. Doklady Akademii Nauk, 1997, 357(2), P. 203-205. In Russian

48. Fokin B.S., Belenkiy M.Ya., Almjashev V.I., Khabensky V.B., Almjasheva O.V., Gusarov V.V. Critical heat flux in a boiling aqueous dspersion of nanoparticles. Tech. Phys. Lett., 2009, 35(5), P. 440-442.

49. Yudin V.E., Otaigbe J.U., Svetlichnyi V.M., Korytkova E.N., Almjasheva O.V., Gusarov V.V. Effects of nanofiller morphology and aspect ratio on the rheo-mechanical properties of polimide nanocomposites. EXP. Pol. Lett., 2008, 2(7), P. 485-493.

50. Lomanova N.A., Panchuk V.V., Semenov V.G., Pleshakov I.V., Volkov M.P., Gusarov V.V. Bismuth orthoferrite nanocrystals: magnetic character- istics and size effects. Ferroelectrics, 2020, 569, P. 240-250.

51. Popkov V.I., Almjasheva O.V., Semenova A.S., Kellerman D.G., Nevedomskiy V.N., Gusarov V.V. Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods. Journal of Materials Science: Materials in Electronics, 2017, 28(10), P. 7163-7170.

52. Prylypko, S.Y., Akimov, G.Y., Revenko, Y.F. et al. Crystallite size and magnetic properties of La0.7Mn1.3O3±∆. Tech. Phys., 2010, 55(7), P. 1056-1057.

53. Nag A., Bose R.S.C., Venu K.S., Singh H. Influence of particle size on magnetic and electromagnetic properties of hexaferrite synthesised by sol-gel auto combustion route. Ceramics International, 2022, 48(11), P. 15303-15313.

54. Proskurina O.V., Sokolova A.N., Sirotkin A.A., Abiev R.Sh., Gusarov V.V. Role of Hydroxide Precipitation Conditions in the Formation of Nanocrystalline BiFeO3.Russ. J. Inorg. Chem., 2021, 66(2), P. 163-169.

55. Rogachev A.S., Mukasyan A.S.Combustion for the synthesis of materials: an introduction to structural macrokinetics. FIZMATLIT, Moscow, 2013, 400 p.

56. Ostroushko A.A., Russkikh O.V. Oxide material synthesis by combustion of organic-inorganic compositions. Nanosystems: Phys., Chem., Math., 2017, 8(4), P. 476-502.

57. Komlev A.A., Gusarov V.V. Glycine-nitrate combustion synthesis of nonstoichiometric Mg-Fe spinel nanopowders. Inorg Mater., 2014, 50(12), P. 1247-1251.

58. Popkov V.I., Almjasheva O.V., Schmidt M.P., Izotova S.G., Gusarov V.V. Features of nanosized YFeO3 formation under heat treatment of glycine-nitrate combustion products.Russ. J. Inorg. Chem., 2015, 60(10), P. 1193-1198.

59. Popkov V.I., Almjasheva O.V., Nevedomskyi V.N., Sokolov V.V., Gusarov V.V. Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycine-nitrate combustion. Nanosystems: Phys., Chem., Math., 2015, 6(6), P. 866-874.

60. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Gusarov V.V. Special features of formation of nanocrystalline BiFeO3 via the glycine-nitrate combustion method.Russ. J. Gen. Chem., 2016, 86(10), P. 2256-2262.

61. Lomanova N. A., Tomkovich M. V., Danilovich D. P., Osipov A. V., Panchuk V. V., Semenov V. G., Pleshakov I. V., Volkov M. P., Gusarov V. V. Magnetic characteristics of nanocrystalline BiFeO3-based materials prepared by solution combustion synthesis. Inorg. Mater., 2020, 56(12), P. 1271-1277.

62. Lomanova N.A., Tomkovich M.V., Sokolov V.V., Ugolkov V.L., Panchuk V.V., Semenov V.G., Pleshakov I.V., Volkov M.P., Gusarov V.V. Thermal and magnetic behavior of BiFeO3 nanoparticles prepared by glycine-nitrate combustion. Journal of Nanoparticle Research, 2018, 20, Art.No 17.

63. Martinson K.D., Sakhno D.D., Belyak V.E., Kondrashkova I.S. Ni0.4Zn0.6Fe2O4 nanopowders by solution-combustion synthesis: influence of Red/Ox ratio on their morphology, structure, and magnetic properties.International Journal of Self-Propagating High-Temperature Synthesis, 2020, 29, P. 202-207.

64. Martinson K.D., Kondrashkova I.S., Popkov V.I. Synthesis of EuFeO3 nanocrystals by glycine-nitrate combustion method.Russ. J. Appl. Chem., 2017, 90(8), P. 1214-1218.

65. Dyachenko S.V., Martinson K.D., Cherepkova I.A., Zhernovoi A.I. Particle size, morphology, and properties of transition metal ferrospinels of the MFe2O4 (M = Co, Ni, Zn) type, produced by glycine-nitrate combustion.Russ. J. Appl. Chem., 2016, 89(4), P. 535-539.

66. Popkov V.I., Almjasheva O.V. Yttrium orthoferrite YFeO3 nanopowders formation under glycine-nitrate combustion conditions.Russ. J. Appl. Chem., 2014, 87(2), P. 167-171.

67. State diagrams of silicate systems. Directory. Issue 2. Metal-oxygen compounds of silicate systems. Ed. N.A.Toropova. Science, Leningrad, 1969, P. 295-298, P. 359-363. (Total 372 p). In Russian.

68. Shannon R.D. Revised effectiveionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, A32, P. 751-767.

69. Gusarov V.V., Semin E.G., Suvorov S.A. Thermodynamics of heterovalent isomorphic mixtures of Be1-1.5xMexO (Me is a 3d element).Russ. J. Appl. Chem., 1983, 56(9), P. 1956-1958. In Russian

70. Gusarov V.V., Egorov F.K., Ekimov S.P., Suvorov S.A. Mossbauer study of kinetics of film state formation under the interaction of magnesium and oron-oxides. Zh. Fiz. Khim., 1987, 61(6), P. 1652-1654. In Russian

71. Gusarov V.V., Suvorov S.A. Thickness of 2-demtnsionsl nonautonomous phases in local equilibrium polycrystalline systems based on a single bulk phase.Russ. J. Appl. Chem., 1993, 66(7), P. 1212-1216.

72. Gusarov V.V., Popov I.Yu. Flows in Two-dimensional nonautonomous phases in polycrystalline system. Nuovo Cimento della Societa Italiana di Fisica D, 1996, 18D(7), P. 799-805.

73. Gusarov V.V., Almjasheva O.V. The role of non-autonomous state of matter in the formation of structure and properties of nanomaterials. Chapter 13 in the book Nanomaterials: properties and promising applications. Ed A.B. Yaroslavtsev. Scientific World Publishing House, Moscow, 2014, P. 378-403. in Russian

74. Kirillova S.A., Panchuk V.V., Semenov V.G., Almjasheva O.V. Solid-phase interaction in the ZrO2-Fe2O3 nanocrystalline system. Nanosystems: Phys., Chem., Math., 2018, 9(6), P. 763-769.


Review

For citations:


Averkiev D.D., Larina L.L., Shevaleevskiy O.I., Almjasheva O.V. Formation of nanocrystalline particles on the basis of La2(Ni,Mn,Fe)2O6 variable composition phases having a structure of double perovskite under conditions of solution combustion. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):655-661. https://doi.org/10.17586/2220-8054-2022-13-6-655-661

Views: 1


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)