Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Thermal stability of the waylandite-structured nanocrystalline BiAl3(PO4)2(OH)6

https://doi.org/10.17586/2220-8054-2022-13-6-662-667

Abstract

A nanocrystalline powder of the waylandite-structured bismuth hydroaluminophosphate was obtained under hydrothermal conditions at 200 °C, 7 MPa and pH 7, and characterized by X-ray diffractometry, scanning electron microscopy (SEM), and energy dispersive microanalysis (EDAX). The simultaneous thermal analysis and high-temperature X-ray diffractometry have shown that the crystal-chemical formula of this compound can be represented as BiAl3(PO4)2O(OH)4·(H2O). This compound retains its structure and crystallite size ( 65 nm) up to about 500 °C. It has been determined that the decomposition of this compound in the 540-800 °C range results in the formation of Bi2O3, Bi2Al4O9 and AlPO4 phases. At temperatures above 800 °C, a complete thermal decomposition of Bi2Al4O9 and the formation of crystalline α-Al2O3 occur in this system, while Bi2O3 keeps evaporating during the isothermal exposure.

About the Authors

D. P. Elovikov
Ioffe Institute; St. Petersburg Electrotechnical University “LETI”
Russian Federation


O. V. Proskurina
Ioffe Institute; St. Petersburg State Institute of Technology
Russian Federation


M. V. Tomkovich
Ioffe Institute
Russian Federation


V. L. Ugolkov
I. V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences
Russian Federation


V. V. Gusarov
Ioffe Institute
Russian Federation


References

1. Kotova O. New adsorbent materials on the base of minerals and industrial waste. Materials Science and Engineering, 2019, 613(1), P. 012001.

2. Wei L., Li Z., Ye G., Rietveld L.C, van Halem D.Comparative study of low-cost fluoride removal by layered double hydroxides, geopolymers, softening pellets and struvite. Environmental Technology, 2022, 43(27), P. 4306-4314.

3. McMillen C.D., Kolis J.W. Hydrothermal synthesis as a route to mineralogically-inspired structures. Dalton Transactions, 2016, 45(7), P. 2772-2784.

4. Mills S.J., Kampf A.R., Raudsepp M., Birch W.D. The crystal structure of waylandite from Wheal Remfry, Cornwall, United Kingdom. Mineralogy and Petrology, 2010, 100(3), P. 249-253.

5. Repina S.A., Popova V.I., Churin E.I., Belogub E.V., Khiller V.V. Florencite-(Sm)-(Sm,Nd)Al3(PO4)2(OH)6: A new mineral species of the alunite-jarosite group from the Subpolar Urals. Geology of Ore Deposits, 2011, 53(7), P. 564-574.

6. Mills S.J., Kampf A.R., Raudsepp M., Christy A.G. The crystal structure of Ga-rich plumbogummite from Tsumeb, Namibia. Mineralogical Magazine, 2009, 73(5), P. 837-845.

7. Blount A.M. The crystal structure of crandallite. American Mineralogist, 1974, 59, P. 41-47.

8. Bayliss P., Kolitsch U., Nickel E.H., Pring A. Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 2010, 74(5), P. 919-927.

9. Kolitsch U. Tiekink E., Slade P., Taylor M.R., Pring A. Hinsdalite and plumbogummite, their atomic arrangements and disordered lead sites. European Journal of Mineralogy, 1999, 11, P. 513-520.

10. Kolitsch U., Pring A. Crystal chemistry of the crandallite, beudantite and alunite groups: a review and evaluation of the suitability as storage materials for toxic metals. Journal of Mineralogical and Petrological Sciences, 2001, 96(2), P. 67-78.

11. Monteagudo J.M., Duran A., Carmona M.S., Schwab R.G., Higueras P. Elimination of inorganic mercury from waste waters using crandallite-type compounds. Journal of Chemical Technology & Biotechnology, 2003, 78(4), P. 399-405.

12. Gilkes R.J. Synthesis, Properties, and Dehydroxylation of Members of the Crandallite-Goyazite Series. Mineralogical Magazine, 1983, 47, P. 221-227.

13. Monteagudo J.M., Duran A., Martin I.S., Schwab R.G. Treatment of aqueous solutions containing nickel using crandallite-type compounds. Journal of Chemical Technology & Biotechnology, 2005, 81(3), P. 262-267.

14. Owen D.N., Cook N.J., Rollog M., Ehrig K.J., Schmandt D.S., Ram R., Brugger J., Ciobanu C.L., Wade B., Guagliardo P. REE-, Sr-, Ca-aluminum-phosphate-sulfate minerals of the alunite supergroup and their role as hosts for radionuclides. American Mineralogist, 2019, 104(12), P. 1806-1819.

15. Hikichi Y., Ohsato H., Miyamoto M. Syntheses and thermal changes of plumbogummite-group phosphate minerals. Journal of the Mineralogical Society of Japan, 1989, 19(2), P. 67. (in Japanese).

16. Schwab R.G., Pimpl T., Schukow H., Stolle A., Breitinger D.K.Compounds of the crandallite-type: Synthesis, properties and thermodynamic data of pure crandallite and woodhouseite. Neues Jahrbuch fu¨r Mineralogie - Monatshefte, 2004, 9, P. 385-409.

17. Frost R.L., Palmer S.J., Pogson R.E. Thermal stability of crandallite CaAl3(PO4)2(OH)5·(H2O) A ‘Cave’ mineral from the Jenolan Caves. Journal of Thermal Analysis and Calorimetry, 2012, 107(3), P. 905-909.

18. Francisco E.A.B., Prochnow L.I., Motta de Toledo M.C., Ferrari V.C., de Jesus S.L. Thermal treatment of aluminous phosphates of the crandallite group and its effect on phosphorus solubility. Sci. agric. (Piracicaba, Braz.), 2007, 64(3), P. 269-274.

19. Pozhidaeva O.V., Korytkova E.N., Romanov D.P., Gusarov V.V. Formation of ZrO2 Nanocrystals in Hydrothermal Media of Various Chemical Compositions.Russian Journal of General Chemistry, 2002, 72(6), P. 849-853.

20. Filippova A.D., Rumyantsev A.A., Baranchikov A.E., Kolesnik I.V., Ivanova O.S., Efimov N.N., Khoroshilov A.V., Ivanov V.K. Hydrothermal Synthesis of γ-WO3 and h-WO3 Powders in the Presence of Citric Acid and Their Photoprotective Properties.Russian Journal of Inorganic Chemistry, 2022, 67(6), P. 780-789.

21. Meskin P.E., Gavrilov A.I., Maksimov V.D., Ivanov V.K., Churagulov B.P. Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia.Russian Journal of Inorganic Chemistry, 2007, 52(11), P. 1648-56.

22. Bachina A.K., Almjasheva O.V., Popkov V.I. Formation of ZrTiO4 under Hydrothermal Conditions.Russian Journal of Inorganic Chemistry, 2022, 67(6), P. 830-838.

23. Enikeeva M.O., Proskurina O.V., Danilovich. D.P., Gusarov V.V. Formation of nanocrystals based on equimolar mixture of lanthanum and yttrium orthophosphates under microwave-assisted hydrothermal synthesis. Nanosyst.: Phys. Chem. Math., 2020, 11(6), P. 705-715.

24. Lomakin M.S., Proskurina O.V., Levin A.A., Sergeev A.A., Leonov A.A., Nevedomsky V.N., Voznesenskiy S.S. Pyrochlore Phase in the Bi2O3-Fe2O3-WO3-(H2O) System: its Formation by Hydrothermal-Microwave Synthesis and Optical Properties.Russian Journal of Inorganic Chemistry, 2022, 67(6), P. 820-829.

25. Nikolaev A.I., Gerasimova L.G, Maslova M.V., Shchukina E.S. Synthetic analogues of natural titanosilicate mesoporous minerals as potential functional materials. Synthesis and application. IOP Conference Series: Materials Science and Engineering, 2019, 704(1), P. 012003.

26. Enikeeva M.O., Kenges K.M., Proskurina O.V., Danilovich D.P., Gusarov V.V. Influence of Hydrothermal Treatment Conditions on the Formation of Lanthanum Orthophosphate Nanoparticles of Monazite Structure.Russian Journal of Applied Chemistry, 2020, 93(4), P. 540-548.

27. Khrapova E.K., Kozlov D.A., Krasilin A.A. Hydrothermal Synthesis of Hydrosilicate Nanoscrolls (Mg1-x Cox)3Si2O5(OH)4 in a Na2SO3 Solution.Russian Journal of Inorganic Chemistry, 2022, 67(6), P. 839-849.

28. Gavryushkin P.N., Thomas V.G., Bolotina N.B., Bakakin V.V., Golovin A.V., Seryotkon Y.V., Fursenko D.A., Litasov K.D. Hydrothermal Synthesis and Structure Solution of Na2Ca(CO3)2: “Synthetic Analogue” of Mineral Nyerereite. Crystal Growth & Design, 2016, 16(4), P. 1893-1902.

29. Thomas V.G., Demin S.P., Foursenko D.A., Bekker T.B. Pulsation processes at hydrothermal crystal growth (beryl as example). Journal of Crystal Growth, 1999, 206(3), P. 203-214.

30. Korytkova E.N., Pivovarova, L.N., Drosdova I.A., Gusarov V.V. Hydrothermal synthesis of nanotubular Co-Mg hydrosilicates with the chrysotile structure.Russian Journal of General Chemistry, 2007, 77(10), P. 1669-1676.

31. Elovikov D.P., Tomkovich M.V., Levin A.A., Proskurina O.V. Formation of the BiAl3(PO4)2(OH)6 Compound with a Waylandite Structure under Hydrothermal Conditions.Russian Journal of Inorganic Chemistry, 2022, 67(6), P. 850-860.

32. Fawcett T.G., Kabekkodu S.N., Blanton J.R., Blanton, T.N. Chemical analysis by diffraction: the Powder Diffraction File. Powder Diffraction, 2017, 32(2), P. 63-71.

33. Grazˇulis S., Merkys A., Vaitkus A. Crystallography Open Database (COD) W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. In: Andreoni, 2020, 1863 p.

34. Sˇesta´k J. Dynamic Character of Thermal Analysis Where Thermal Inertia Is a Real and Not Negligible Effect Influencing the Evaluation of Non-Isothermal Kinetics: A Review. Thermo, 2021, 1(2), P. 220-231.

35. Holba P., Sˇ esta´k J. Heat inertia and its role in thermal analysis. Journal of Thermal Analysis and Calorimetry, 2015, 121(1), P. 303-307.

36. Speranskaya E.I., Skorikov V.M., Safronov G.M., Gaidukov E.N. System Al2O3-Bi2O3. Inorganic Materials, 1970, 6(7), P. 1201-1202.

37. Oudich F., David N., Mathieu S., Vilasi M. Phase equilibria investigations and thermodynamic modeling of the system Bi2O3-Al2O3. Journal of Nuclear Materials, 2015, 457, P. 72-79.

38. Levin E.M., Roth R.S. Polymorphism of Bismuth Sesquioxide. II. Effect of Oxide Additions on the Polymorphism of Bi2O3. Journal of Research of the National Bureau of Standards. Section A, 1964, 68(2), P. 197-206.


Review

For citations:


Elovikov D.P., Proskurina O.V., Tomkovich M.V., Ugolkov V.L., Gusarov V.V. Thermal stability of the waylandite-structured nanocrystalline BiAl3(PO4)2(OH)6. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):662-667. https://doi.org/10.17586/2220-8054-2022-13-6-662-667

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)