Preview

Nanosystems: Physics, Chemistry, Mathematics

Advanced search

Multi-order and structural mechanism of atom nanocluster formation in rhombohedral Cu-Zr-thiospinels

https://doi.org/10.17586/2220-8054-2022-13-6-668-677

Abstract

A structural mechanism for the formation of nanoclusters and the rhombohedral modification of CuZr1.86(1)S4 has been proposed. Group-theoretical and crystal-chemical methods are used to study the features of the crystal structure and multi-order in Cu-Zr-thiospinel. A multi-order is a structural organization of a material, in the formation of which different degrees of freedom of a crystal participate. It has been proven that the rhombohedral structure of CuZr1.86(1)S4 is formed as a result of displacements and orderings of all types of atoms. It is theoretically shown that the formation of a rhombohedral phase is associated not only with the lattice, but also with the charge and, possibly, orbital degrees of freedom of the crystal. Theory predicts that the rhombohedral phase must be an improper ferroelastic. An important feature of the rhombohedral structure is metal nanoclusters: “bunch” of dimers, trimers, and tetrahedra. Bunch of dimers are an unusual type of self-organization of atoms in rhombohedral spinel-like structures, formed by atoms of two (tetrahedral and octahedral) frustrated crystal sublattices.

About the Authors

V. M. Talanov
Platov South-Russian State Polytechnic University
Russian Federation


M. V. Talanov
Southern Federal University
Russian Federation


References

1. Bitoh T., Hagino T., et al. Superconductivity in Thiospinel CuRh2S4. J. Phys. Soc. Jpn., 1992, 61 (8), P. 3011-3012.

2. Hagino T., Seki Y., et al. Superconductivity in spinel-type compounds CuRh2S4 and CuRh2Se4. Phys. Rev. B, 1995, 51 (18), P. 12673-12684.

3. Suzuki H., Furubayashi T., et al. Metal-Insulator Transition and Superconductivity in Spinel-Type System Cu1-xZnxIr2S4. J. Phys. Soc. Jpn., 1999, 68, P. 2495-2497.

4. Cao G., Kitazawa H., et al. Superconductivity in Zn-doped CuIr2S4. Physica C: Superconductivity, 2000, 341-348, P. 735-736.

5. Cao G., Furubayashi T., et al. Suppression of metal-to-insulator transition and appearance of superconductivity in Cu1-xZnxIr2S4. Phys. Rev. B, 2001, 64, 214514.

6. Ito M., Hori J., et al. Pressure-Induced Superconductor-Insulator Transition in the Spinel Compound CuRh2S4. Phys. Rev. Lett., 2003, 91, 077001.

7. Sekine T., Uchinokura K., et al. Electrical and thermal properties in CuV2S4. Solid State Commun., 1984, 51, P. 187-189.

8. Mahy J., Colatis D., Van Dyck D., Amelinck S. Electron diffraction evidence for domain structures in the low-temperature incommensurate phase in CuV2S4. J. Solid State Chem., 1987, 68, P. 320-329.

9. Radaelli P.G., Horibe Y., et al. Formation of isomorphic Ir3+ and Ir4+ octamers and spin dimerization in the spinel CuIr2S4. Nature, 2002, 416, P. 155-158.

10. Furubayashi T., Suzuki H., Kobayashi N., Nagata S. Large negative magnetoresistance in thiospinel CuCrZrS4. Solid State Commun., 2004, 131, P. 505-508.

11. Plumier R., Sougi M., Lecomte M. Observation of an unusual short range magnetic ordering in spinel Cu1/2In1/2Cr2S4. Phys. Lett. A, 1977, 60, P. 341-344.

12. Isoda M., Mori S. Magnetic Correlation and Breakdown of Fermi Liquid Picture in Frustrated Itinerant Electron Magnet Magnetic. J. Phys. Soc. Jpn., 2000, 69, P. 1509-1516.

13. Anderson P.W. Ordering and Antiferromagnetism in Ferrites. Phys. Rev., 1956, 102, P. 1008-1013.

14. Attfield J.P. Magnetism and the Trimeron Bond. Chem Mater., 2022, 34 (7), P. 2877-2885.

15. Furubayashi T., Matsumoto T., Hagino T., Nagata S. Structural and Magnetic Studies of Metal-Insulator Transition in Thiospinel CuIr2S4. Phys. Soc. Jpn., 1994, 63, P. 3333-3339.

16. Isobe M., Ueda Y.Y. Observation of Phase Transition from Metal to Spin-Singlet Insulator in MgTi2O4 with S = 1/2 Pyrochlore Lattice. Phys. Soc. Jpn., 2002, 71, P. 1848-1851.

17. Schmidt M., Ratcliff W., et al. Spin Singlet Formation in MgTi2O4: Evidence of a Helical Dimerization Pattern. Phys. Rev. Lett., 2004, 92, 056402.

18. Talanov V.M., Shirokov V.B., Ivanov V.V., Talanov M.V. Theory of Structural Phase Transition in MgTi2O4. Crystallogr. Reports, 2015, 60 (1), P. 101-110.

19. Matsuno K.I., Katsufuji T., et al. Charge Ordering in the Geometrically Frustrated Spinel AlV2O4. J. Phys. Soc. Jpn., 2001, 70, P. 1456-1459.

20. Horibe Y., Shingu M., et al. Spontaneous Formation of Vanadium Molecules in a Geometrically Frustrated Crystal: AlV2O4. Phys. Rev. Lett., 2006, 96, 086406.

21. Talanov M.V., Shirokov V.B., et al. Vanadium clusters formation in geometrically frustrated spinel oxide AlV2O4. Acta Crystallogr. B, 2018, 74, P. 337-353.

22. Khomskii D.I., Streltsov S.V. Orbital Effects in Solids: Basics, Recent Progress, and Opportunities. Chem. Rev., 2021, 121 (5), P. 2992-3030.

23. Talanov M.V., Talanov V.M. Structural Diversity of Ordered Pyrochlores. Chem. Mater., 2021, 33, P. 2706-2725.

24. Talanov V.M., Shirokov V.B., Talanov M.V. Unique atom hyper-kagome order in Na4Ir3O8 and in low-symmetry spinel modifications. Acta Crystallogr. A, 2015, 71, P. 301-318.

25. Talanov M.V., Shirokov V.B., Talanov V.M. Phenomenological thermodynamics and the structure formation mechanism of the CuTi2S4 rhombohedral phase. Phys. Chem. Chem. Phys., 2016, 18, P. 10600-10606.

26. Talanov M.V. Two different mechanisms of metal cluster formation in the rhombohedral spinel structures: AlV2O4 and CuZr1.86(1)S4. Crystal Growth & Design, 2018, 18, P. 3433-3440.

27. Trighet L., Rouxel J. Le spinelle direct CuZr2S4. C.R. Acad. Sc. Ser. C, Sci. Chim., 1968, 267 (18), P. 1322-1324.

28. Dong Y., McGuir M.A., Yun H., DiSalvo F.J. Synthesis, crystal structure, and properties of the rhombohedral modification of the thiospinel CuZr1.86(1)S4. J. Solid State Chem., 2010, 183, P. 606-612.

29. Kovalev O.V. Representations of Crystallographic Space Groups. Irreducible Representations, Induced Representations and Co-representations. Ed. by H.T. Stokes and D.M. Hatch, Taylor and Francis Ltd., London, 1993, 349 p.

30. International tables for crystallography, volume A, Space-group symmetry. Ed. by T. Hahn, Fifth edition, Springer, 2005, 911 p.

31. Talanov V.M., Shirokov V.B. Tilting structures in spinels. Acta Crystallogr. A, 2012, 68, P. 595-606.

32. Talanov V.M., Shirokov V.B. Atomic order in spinel structure - a group-theoretical analysis. Acta Crystallogr. A, 2014, 70, P. 49-63.

33. Sahnenko V.P., Talanov V.M., Chechin G.M. Group-Theoretic Analysis of the Full Condensed Complex Arising upon Structural Phase Transformations. Fiz. Met. Metalloved., 1986, 62, P. 847-856.

34. Sakhnenko V.P., Talanov V.M. Deformational phase transitions in crystals of cubic classes. Deformations of Stretching. Phys. Solid State, 1980, 22, P. 785-792.

35. Stokes H.T., Hatch D.M., 2007, ISOTROPY, URL: http://stokes.byu.edu/iso/isotropy.html.

36. Stokes H.T., Kisi E.H., Hatch D.M., Howard C.J. Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. Acta Crystallogr. B, 2002, 58, P. 934-938.


Review

For citations:


Talanov V.M., Talanov M.V. Multi-order and structural mechanism of atom nanocluster formation in rhombohedral Cu-Zr-thiospinels. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):668-677. https://doi.org/10.17586/2220-8054-2022-13-6-668-677

Views: 0


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)