Preview

Наносистемы: физика, химия, математика

Расширенный поиск

Исследования тонких пленок сульфида кадмия, легированных Sn, в качестве высокоселективных фотосенсоров зеленого света

https://doi.org/10.17586/2220-8054-2022-13-6-678-687

Аннотация

Тонкие пленки сульфида кадмия (CdS), легированного оловом (Sn), были выращены методом химического осаждения. Было замечено, что все тонкие пленки (легированные и нелегированные) были поликристаллическими с наноразмерными кристаллитами и кубической кристаллической структурой CdS. Согласно данным СЭМ CdS и CdS, легированный Sn представляют собой наностержни. Анализ ЭДС показывает дефицит серы и избыток кадмия в пленках. Спектроскопия UV-VIS подтверждает увеличение ширины запрещенной зоны при легировании пленок. Микроструктурный анализ показывает, что размер частиц увеличивается с увеличением концентрации Sn. Гравиметрический анализ показывает, что толщина тонкой пленки чистого CdS составляет 134 нм и увеличивается с увеличением концентрации легирующего олова. Измерения электропроводности показывают, что материал меняет свой отрицательный температурный коэффициент на положительный температурный коэффициент при повышении температуры. Измерения ТЭП показывают полупроводниковую природу пленок n-типа, которая обладает высокой светочувствительностью. Было обнаружено, что тонкая пленка чистого CdS менее чувствительна к зеленому свету, однако тонкие пленки CdS, легированные оловом (3 мас.%), демонстрируют повышенный фотоотклик, особенно на зеленый свет.

Об авторах

Ю. К. Шарма
Джайпурский национальный университет
Россия


Снехал Д. Патил
Глобальный университет Вивекананды; Р. Л. Колледж
Россия


Харшал А. Никам
Глобальный университет Вивекананды; Р. Л. Колледж
Россия


Падмаджа Шарма
Джайпур Центр
Россия


Динеш Б. Борс
Р. Л. Колледж
Россия


Д. Р. Патил
Р. Л. Колледж
Россия


Список литературы

1. Gilic M., Trajic J., Romcevic N., Romcevic M. Optical properties of CdS thin films. Optical Materials, 2013, 35, P. 1112-1117.

2. Xiao Z., Feng Li Y., Yao B. Band gap engineering of Cu2CdxZn1-xSnS4 alloy for photovoltaic applications: A complimentary experimental and first principal study. J. of Applied Phys., 2013, 114, 183506.

3. Kim J.H., Shin D.H. Growth of Sn (O,S)2 buffer layers and its application to Cu (In, Ga) Se2 solar cells. Current Applied Physics, 2014, 14, P. 1803-1808.

4. Ferekides C.S., Marinskiy D., et al. High efficiency CSS CdTe solar cells. Thin Solid Films, 2000, 361-362, P. 520-526.

5. Dimroth F. High efficiency solar cells from III-V compound semiconductors. Phys. Stat. Sol., 2006, 3, P. 373-379.

6. Meshram R.S., Suryavanshi B.M., Thombre R.M. Structural and optical properties of CdS thin films obtained by spray pyrolysis. Adv. Appl. Sci. Res., 2012, 3 (3), P. 1563-1571.

7. Roy P., Srivastava S.K. In situ deposition of Sn-doped CdS thin films by chemical bath deposition and their characterizations. J. Phys. D: Appl. Phys., 2006, 39, P. 4771-4776.

8. Eygi Z.D., Demirselcuk B., Bilgin V. Influence of Sn doping on CdS thin film grown by ultrasonic spray pyrolysis.Int. J. Thin Film. Sci. Tec., 2016, 5 (2), P. 103-106.

9. Ravangave L.S., Biradar U.V., Misal S.D. The effect of ionic composition on structural and optical properties of CdxZn1-xS thin films growth by spray pyrolysis.Int. J. of Sci. Res. Publications, 2012, 2 (6).

10. Karn A., Kumar N., Aravindan S. Chemical Vapour Deposition synthesis of novel indium oxide nanostructers in strongly reducing growth ambient. J. Nanostruct., 2017, 7 (1), P. 64-76.

11. Rahman K.S., Haque F., Khan N.A., Islam M.A. Effect of CdCl2 Treatment on Thermally Evaporated CdTe Thin Films. Chalcogenide Letters, 2014, 11 (3), P. 129-139.

12. Camacho R.E., Morgan A.R., Flores M.C., McLeod T.A. Carbon Nanotube Arrays for Photovoltaic Applications. Nano. Ele. Applications, 2007, 59, P. 39-42.

13. Xu N., Li P., Hao Y., Wang X. Effect of sputtering power on Cd/Zn atomic ratio and optical properties of Cu2ZnxCd1-xSnS4 thin films deposited by magnetron sputtering: An experimental and first-principle study. Chem. Phys. Lett., 2016, 660, P. 132-135.

14. Kamal T., Parvez S., et al. Chemical bath deposition of CdS layer for thin film solar cell. SAJREST, 2017, 2 (3), P. 610-617.

15. Husham M., Hassan Z., Selman A.M., Allam N.K. Microwave assisted chemical bath deposition of nanocrystalline CdS thin films with superior photodetection characteristics. Sens. Actuators A, 2015, 230, P. 9-16.

16. Ikhmayies S.J., Juwhari H.K., Ahmad-Bitar R.N. Nanocrystalline CdS: in thin films prepared by the spray-pyrolysis technique. J. Lumin., 2013, 141, P. 27-32.

17. Ohring M. Materials science of thin films: Deposition and structure. Academic press, 2002.

18. Khairnar V.S., Ph. D. Thesis, Sant Gadgebaba Amravati University, Amravati, 2019, Chapter 2, P. 56-86.

19. Wood D.L., Tauc J. Weak absorption tails in amorphous semiconductors. Phys. Rev. B, 1972, 5, P. 3144-3151.

20. Yadav R.S., Rai S.B. Surface analysis and enhanced photo-luminescence via Bi3+ doping in a Tb3+ doped Y2O3 nano-phosphor under UV excitation. J. Alloys Compds., 2017, 700, P. 228-237.

21. Oladeji I.O., Chow L., et al.Comparative study of CdS thin films deposited by single, continuous, and multiple dip chemical processes. Thin solid films, 2000, 359, P. 154-159.

22. Tec-Yam S., Patino R., Oliva A.I. Chemical bath deposition of CdS films on different substrate orientations. Cur. Appl. Phys., 2000, 11, P. 914-920.

23. Phuruangrat A., Thongtem T., Thongtem S. Effect of Cd and S sources on the morphologies of CdS synthesized by solvothermal in the mixed solvents. Current applied physics, 2009, 9 (3), P. S201-S204.

24. Muthukumarasamy N., Jayakumar S., Kannan M.D., Balasundarapraphu R. Structural phase change and optical band gap bowing in hot wall deposited CdSexTe1-x thin films. Solar Energy, 2009, 83, P. 522-526.

25. Afzaal M., Brien P.O. Resent developments in II-VI and III-VI semiconductors and their applications in solar cells. J. Mater. Chem., 2006, 16, P. 1597-1602.

26. Yadav R.S., Dhoble S.J., Rai S.B. Improved photon upconversion photoluminescence and intrinsic optical bistability from a rare earth co-doped lanthanum oxide phosphor via Bi3+ doping. New J. Chem., 2018, 42, P. 7272-7282.

27. Wang F., Deng R., et al. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater., 2011, 10, P. 968-973.

28. Yadav R.S., Verma R.K., Rai S.B.Intense white light emission in Tm3+/Er3+/Yb3+ co-doped Y2O3-ZnO nano-composite. J. of Phys. D: Appl. Phys., 2013, 46, 275101.


Рецензия

Для цитирования:


Шарма Ю.К., Патил С.Д., Никам Х.А., Шарма П., Борс Д.Б., Патил Д.Р. Исследования тонких пленок сульфида кадмия, легированных Sn, в качестве высокоселективных фотосенсоров зеленого света. Наносистемы: физика, химия, математика. 2022;13(6):678-687. https://doi.org/10.17586/2220-8054-2022-13-6-678-687

For citation:


Sharma Y.C., Patil S.D., Nikam H.A., Sharma P., Borse D.B., Patil D.R. Studies on Sn doped cadmium sulfide thin films as highly selective green light photosensors. Nanosystems: Physics, Chemistry, Mathematics. 2022;13(6):678-687. https://doi.org/10.17586/2220-8054-2022-13-6-678-687

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-8054 (Print)
ISSN 2305-7971 (Online)